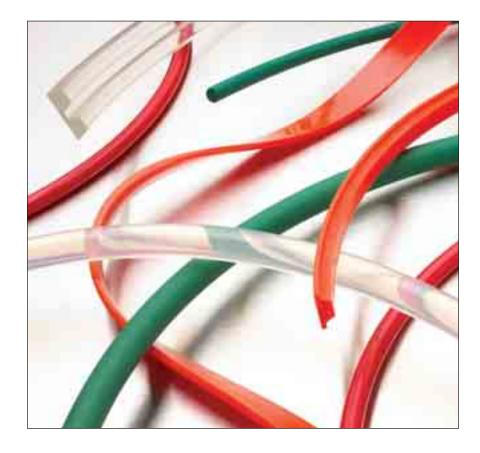
Fenner Urives

EAGLE POLYURETHANE BELTING & O-RINGS

ALLER A

YOUR #1 SOURCE FOR POLYURETHANE BELTING!

The possibilities are endless with Eagle Polyurethane and Polyester Belting and O-Rings from Fenner Drives. As a world leader in belting, we have a comprehensive range of high quality non-reinforced and reinforced products.


From light, medium or heavy duty conveying to custom profiles, Fenner Drives has the right product for your application.

Eagle[®] Polyurethane Belting and O-Rings

Contents

Non-Reinforced Polyurethane Belting4
Quick Connect and Endless Belting5
Factory Welded Endless Belting6
Reinforced Polyurethane Belting7
Polyester Belting
Co-Extruded Polyurethane Belting
SuperGrip Top Polyurethane
and Polyester BeltingII
Special Profiles & Durometres
Welding Kits
Welding Instructions
Reinforced Belting
Non-Reinforced Belting
Product Application Guidelines
Product Applications
Product Range
Part Number Listing
Technical Data
Engineering Data
Chemical Resistance Chart
Frequently Asked Questions

Eagle Opaque 80 Eagle Orange 85 Eagle Clear 85 Eagle Ivory 85 Eagle Green 89 Eagle Green 89 T Eagle Red 90 Eagle Beige 95 Eagle Clear 95

Eagle[®] Non-Reinforced Polyurethane Belting — the proven workhorse for material transfer and light-duty power transmission applications.

- Solid polyurethane construction
- Round, V- and flat profiles
- Excellent abrasion resistance
- Self tensioning no take-up required
- Easily welded on site with a Fenner Drives Butt Welding Kit

Eagle Clear 85 QC Eagle Red 85 QC Eagle Yellow 85 QC Eagle Clear 85 TOR

Eagle[®] Non-Reinforced Quick-Connect Polyurethane Belting the quick and easy way to avoid conveyor and system downtime; no welding required.

- Ideal quick fixes zero downtime products
- Twisted O-Rings (TOR) ideal fast fit solution for live roller conveyors
- Twisted loop construction available with plastic or metal hooks
- Round hollow construction available with metal connectors
- No need to dismantle drive components
- Custom colours and durometers available to order

FACTORY WELDED ENDLESS BELTING

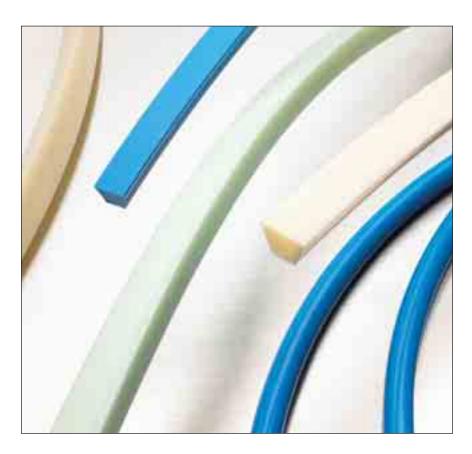
Eagle Endless O-Rings and Fabricated Belts



Eagle[®] Endless O-Rings and Fabricated Belts — let us do the work for you and take the hassle out of fabricating your own endless belts.

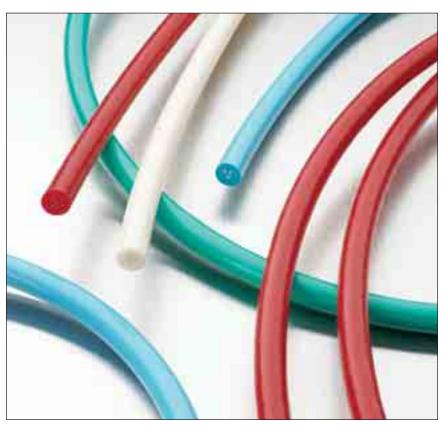
- Available in all Eagle belting colours and durometers
- For line shaft, live roller, transfer conveyors and light duty power transmission drives
- High coefficient of friction
- Elastic with excellent memory
- Popular 5mm and 6mm sizes in stock
- Custom sizes, colours and durometers are made to order
- Rapid order turnaround for all specials
- For fast fit Twisted O-Rings, see page 5

REINFORCED POLYURETHANE BELTING


Eagle Opaque 80 R Eagle Hyfen® 85 R Eagle Ivory 85 R Eagle Orange 85 R Eagle Green 89 R Eagle Green 89 RT Eagle Beige 95 R Eagle Hyfen 95 R

Eagle[®] Reinforced Polyurethane Belting — the ideal high-strength, low-stretch choice for longer conveyor lengths, heavier conveyed loads, or medium-duty power transmission applications.

- For more highly loaded applications
- Either polyester cord or tape reinforcement
- High strength low stretch
- Round, V- and Twin V- profiles
- Can be cogged for increased flexibility
- Reinforced belting is not self-tensioning take up the slack with a Fenner Drives T-Max[™] Tensioner


Eagle White 40D Eagle Blue 55D

Eagle[®] Polyester Belting — a low-stretch, hard-wearing option. Ideal for conveying heavy or abrasive materials; also for longer conveyor lengths.

- Made from solid polyester
- Low stretch characteristics
- Ideal for longer spans
- Ideal for conveying heavy materials
- Lower coefficient of friction than polyurethane
- Allows for accumulation while conveying

Eagle Red 50D CC LCF Eagle Blue 55D CC Eagle Natural 55D CC Eagle Green 63D CC Eagle Natural 63D CC



Eagle[®] Reinforced Can Cable — when canning lines go down, don't call in the wire splicing team and wait; weld our Can Cables endless in minutes yourself!

- Blue, Green and Natural are 100% polyester reinforced with high tensile cord; Red is a Fenner Drives engineered proprietary polymer blend.
- High performance, low cost alternative to steel cables
- Fast installation a zero downtime product
- Easily welded endless on site with overlap weld kit
- Eagle Red 50D has a lower coefficient of friction (LCF)
- Popular ³/₈" (9.5mm) diameter cable available
- Other sizes and colours made to order

CO-EXTRUDED POLYURETHANE BELTING

Eagle Red 85 CXF Eagle Hyfen 85 CXF® Eagle Hyfen 85 CXR®

Eagle[®] Red 85 & Reinforced Hyfen 85 Co-Extruded Polyurethane Belting — for flat or inclined conveyors, provides extra grip and cushioning.

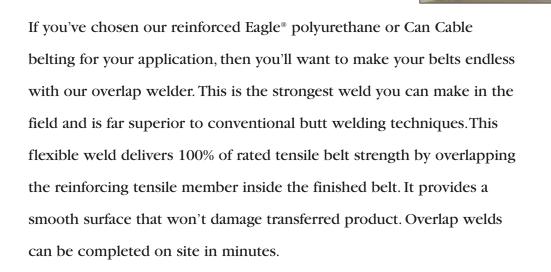
- Non-reinforced and reinforced versions
- Ultra-grip co-extruded 60A top surface
- Tough 85A base
- Smooth (CXF) and rough (CXR) top surfaces available
- V- and Twin V- profiles
- Integrally bonded top cannot delaminate
- Outperforms all adhesively bonded special surface belts
- Reinforced belting is not self-tensioning use a T-Max[™] Tensioner from Fenner Drives

Eagle Opaque 80 SGT Eagle Ivory 85 SGT Eagle Ivory 85 SGT PU Eagle Ivory 85 RSGT Eagle Ivory 85 RSGT PU Eagle Green 89 SGT Eagle Green 89 RSGT Eagle Red 90 SGT Eagle White 40D SGT

Eagle[®] SGT Polyurethane and Polyester Belting — incorporating high grip, low wear top surfaces. Ideally suited for ceramic, woodworking and corrugated conveying applications.

- Polyurethane 80A, 85A, 89A, and 90A base durometers
- Polyester 40D base durometer
- Non-reinforced (SGT) and reinforced (RSGT) versions
- PVC or polyurethane top surfaces available
- PVC SuperGrip Top for high grip non-abrasive materials
- PU SuperGrip Top for heavier duty highly abrasive materials
- Integrally bonded top cannot delaminate
- V-profiles
- Custom top surfaces available on request

Work one on one with our design engineers to develop an optimum solution


Eagle[®] Custom Belting — our product design and engineering teams work with you to develop the correct belt profile and optimum material selection for your specific application.

- Dual durometers a variety of options are available to utilize the best properties of two different polyurethane materials
- Static dissipative and UV stabilized material options
- Tracking features to fit unique pulleys and drive configurations
- Ridged profiles for reduced product contact surface
- Larger surface areas to lower unit pressure on heavy or sensitive product surfaces

WELDING KITS

OVERLAP WELDING

Kit Includes: Bench Clamp, Hot Knife, Set of Dies, Flash Cutters, Cutting Shears, Carrying Case

BUTT WELDING

Kit Includes: Large Clamp or Mini Clamp, Hot Knife, Flash Cutters, Cutting Shears, Carrying Case

Take the hassle out of fabricating endless non-reinforced polyurethane belts with the Fenner Drives Butt Welding System. The kit provides a fast, economical way to join all non-reinforced Eagle belting and even hollow Quick-Connect. Our unique clamping tool is the easiest and most reliable to use and ensures proper alignment of belt ends. For belting larger than 14mm and C, D, E and Twin V-profiles, Fenner Drives offers a 3" hot knife for a more effective weld.

Fenner Drives' Overlap Welder is designed exclusively to produce an overlap joint in Eagle® Reinforced Belting and Eagle Non-Reinforced Belting. A proper overlap weld will yield around 100% of the belt's ultimate tensile strength. With the tools provided and these instructions, proper overlap welding technique can be achieved. Note: A clean environment can contribute to ensuring a proper weld. Make sure the area is well ventilated and free of dust, dirt, and draft. Practice makes perfect. We strongly encourage getting familiar with the welder and practicing on a short piece of belt before making a final weld on the belt.

1. Securely fasten the welding fixture to mounting surface.

2. Examine the coated hot knife blade for scratches. A scratched or damaged surface can affect weld results; heating element may need to be replaced.

3. Plug the hot knife into a 240v (or 110/120v, as appropriate) socket and preheat for ten minutes. Once hot, use a clean, dry cloth to gently remove any urethane residue from previous welding from the coated surface. Warning: Do not use any object to scrape urethane from surface.

4. Select the belt profile jigs to suit the belt section being joined. Belt profiles are marked clearly on the top of each jig. Remove black fixing nuts on the top of the welding fixture. Fit the selected belt profile jig into place by locating on the pins (see Figure 1). Jigs for round profiles are in two pieces; jigs for V-section profiles are in three pieces. For V-section jigs, fit two pieces at the rear and one at the front. Ensure that the required profile

faces inwards and that identical profiles face each other.

5. Secure the fixing nuts to hold jigs in place.

Figure 1

6. Using the belt cutters provided, cut the belt to the required length as outlined in the Technical Data section in this catalogue. Note: 38mm should be added to the nominal length to allow for the overlap joint. Cut each end of belt at a 15° angle and trim off any debris from cut ends.

7. For reinforced belts, use the fixed depth drill bits provided to drill out the reinforced cord section at both ends (see Figure 2). See Table 1 to determine the appropriate drill bit.

Figure 2

8. Slide one belt end into the rear profile jig from the left until it extends from the profile jig by 2 - 3mm on the right side. Tighten screw X (Figure 3) to hold belt end in place.

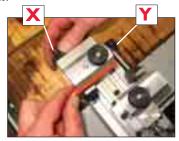


Figure 3

Cross Section	Use Drill Bit
6mm – 8mm Round; Z – A	2mm
10mm – 12mm 3/8", 1/2" Round; B	3.5mm
I5mm – I8mm Round; C	5mm
Table 1	

Cross Section	Estimated HeatingTime
2mm – 6mm, 3/32"–1/4"	<10 sec
7mm – 9mm, 5/16", all 3L and Z,	10 – 20 sec
10mm, 3/8", all A (except Hi-Ridge Top)	21 – 30 sec
12mm – 15mm, 1/2" – 9/16", all Twin, A Hi-Ridge Top, B	31 – 50 sec
16mm +, 5/8" – 3/4", C, D	>50 sec

Table 2

9. Repeat step 8 for the other end of the belt, sliding into the front (sliding) profile jig from the right and extending 2 - 3mm on the left side. Tighten screw Y (see Fig. () to hold belt end

Figure 4

Fig. 4) to hold belt end in place.

10. Lift blue clamp handle, moving the belt ends toward each other in the clamp. Leave enough space between belt ends to insert the hot knife blade (Fig.5).

Figure 5

11. Insert hot knife blade between the two exposed lengths of the belt. Ease the belt ends into contact with the hot knife blade by moving the blue clamp handle upwards. Continue to raise the blue clamp handle, melting the belt, until firm resistance is met. Leave the hot knife in place for the required heating time (Table 2).

12. Important: The following sequence must be done very quickly. Ease blue clamp handle down enough to remove hot knife blade. Once the hot knife blade is

Figure 6

removed, quickly push up the blue clamp handle until it locks in position to bring the two belt ends together. Leave belt ends clamped in this position for approximately 3 – 4 minutes (Fig. 6). 13. While weld is cooling, unplug the hot knife and use a clean, dry cloth to clean excess urethane material from the coated heating surface. It is important that the heating element be cleaned between every weld.

14. Loosen screws X and Y to release the belt from the jigs and lower the blue clamp handle. The belt can now be removed from the welder. Warning: Do not bend/flex the belt at the joint at less than the recommended pulley diameter for the given belt profile.

15. Using the flash cutters provided, trim off any excess flash from the belt to ensure a correct profile around the joint (Figure 7).

16. Important: Allow

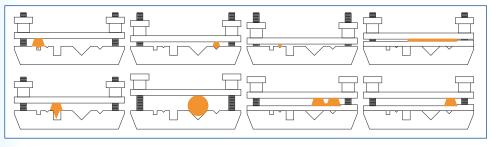

the belt to cure for a

Figure 7

minimum of 30 minutes prior to installing, tensioning or putting strain on the belt weld.

For any questions about your welding kit, just call +44 (0)870 7577007 and we'll be bappy to belp you. A proper butt weld will yield 100% of the non-reinforced belt's ultimate tensile strength. Note: A clean environment is necessary for a good weld. Make sure the area is well ventilated and free of dirt, dust and draft.

Cross S	Use V-Groove	
2mm – 3mm	3/32" - 1/8"	Small
4mm – 8mm	3/16" - 5/16"	Medium
10mm – 15mm	3/8" - 3/4"	Large

Figure 2

Figure 1

1. For round belts 14mm and larger and C, D, E and Twin V-profiles, our 3" Hot Knife is required. Examine the coated hot knife blade for scratches. A damaged hot knife can negatively affect weld results.

2. Plug the hot knife into 240v (or 110/120v as appropriate) outlet and preheat for approximately ten minutes. Once hot, use a clean, dry cloth and gently remove any residue on the blade from previous welding. Warning: Do not use a hard object to scrape polyurethane from hot knife blade.

3. Using the cutting shears provided, cut each end of the belt perfectly square. Under certain circumstances it may be necessary to butt weld a reinforced belt. In these situations the reinforcement at each cut end must be drilled back 5mm – 7mm prior to welding. See Table 1 to determine the appropriate drill bit. If unclear about the circumstances that would require butt welding a reinforced belt, please contact Fenner Drives Applications Engineering. Note: Contact Fenner Drives for instructions on determining correct belt length.

4. Refer to Figure 1. Using the Hand Clamp, slide the spacer toward the mounting clamps, squeeze the handles closed, and finger tighten the thumb nut located to the right of the right side mounting clamp.

Cross Section	Use Drill Bit
6mm–8mm,1/4"–5/16", Z/10–A/13	2mm, 5/64"
10mm–12mm, 3/8"–1/2", B/17	3.5mm, 9/64"
15mm–18mm, 9/16"–3/4", C/22	5mm, 13/64"

Cross Section	Estimated HeatingTime
2mm – 6mm, 3/32"–1/4", .055" Thick Flats	<10 sec
7mm – 9mm, 5/16", all 3L and Z, .06"x .75", .06" x 1.5", .08" x .75", .09" x 1.00", .13" x .63"	10 – 20 sec
10mm, 3/8", all A (except Hi-Ridge Top), .06" × 1.75", .06" × 2.00", .09" × 1.25", .09" × 1.50", .13" × 1.00", .25" × .63"	21 – 30 sec
12 mm – 15 mm, 1/2" – 9/16", all Twin, A Hi-Ridge Top, all B, .06" x 3.00", .09" x 2.00"	31 – 50 sec
16 mm – 20 mm, 5/8" – 3/4", C, D	>50 sec

mounting positions. Starting on one side, loosen the clamp nuts and place belt in desired clamping position. Slide belt in clamp so that the end is halfway between the two mounting clamps. Tighten clamp nuts. Note: For round and ridge-top profiles, remove bottom plate.

5. Figure 2 illustrates possible belt clamp

6. On the opposite clamp, loosen nuts and place belt in the same clamping position. Warning: Make sure there are no twists in the belt.

Slide belt in clamp until the two belt ends butt together. Make sure that ends are properly aligned on all sides; see Fig. 3. Tighten clamp nuts. Note: Try to keep both clamping plates parallel to the grooved base blocks.

7. Loosen thumb nut on right approx. 1½ turns and allow the handles to open. With your left thumb, hold the spacer forward and with your right hand, insert the hot knife blade between belt ends and squeeze handles together. Refer to Figure 4.

8. As the belt ends begin to melt, the handles will contact the spacer. Hold handles tight against the spacer. After the appropriate time (refer to Table 1), quickly release the handles, slide the spacer toward yourself, withdraw the hot knife blade, and squeeze the handles together.

9. Tighten the thumb nut on the right and allow the welded joint to cure. Small cross section belts should be left in the clamp for a minimum of one minute to allow for initial cooling. Belt cross sections over 6 mm (¼") wide should be left in the clamp a minimum of three minutes. Warning: Allow the belt to cure for a minimum of ½ hour prior to installing, tensioning, or straining the belt weld. Note: While the belt is cooling, use a

clean, dry cloth to remove any residue from the hot knife blade.

10. Loosen clamp nuts and remove belt from clamp. Using the flash cutters, remove the bead from the splice; see Fig. 5.

Figure 3

Figure 4

Figure 5

Fenner Drives accept no responsibility for damage or injury caused by the misuse of this equipment.

PRODUCT APPLICATION GUIDELINES

With such a range of products, how do you choose what's right for your application? While the possibilities seem endless, there are some general guidelines we can make based on our extensive experience with polyurethane and polyester belting products. The uses are not limited to those listed here; if you have a question about a product or application that isn't addressed below, please contact our Applications Engineering department. We'll be happy to help.

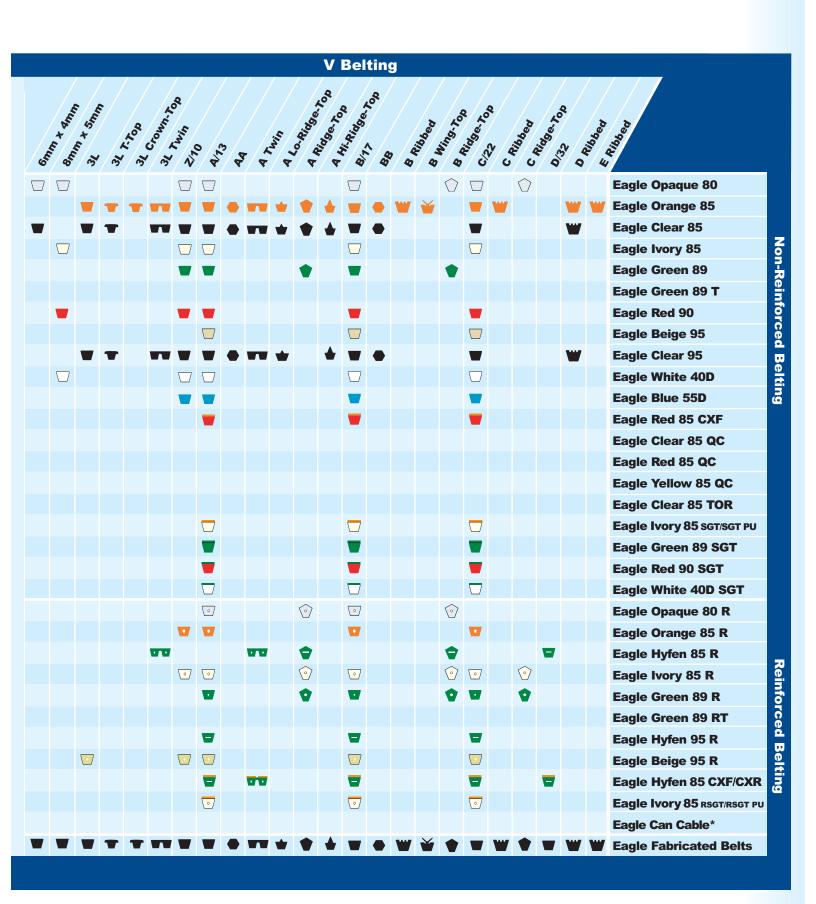
		Working Load less than 9 kg/belt	Working Load 9.5 — 18 kg/belt	Working Load greater than 18 kg/belt	Accumulating Applications	Washdown Applications	Can Conveyors	Highly Abrasive Applications	Over 15 M c.d.	Inclines or Declines	High Coefficient of Friction	FDA Compliant	Static Dissipating
	Eagle Opaque 80	• •							No			No	No
	Eagle Orange 85	• • -	• •						No			Yes	No*
ວາ	Eagle Clear 85	• •	• •						No			Yes	No*
Itin	Eagle Ivory 85								No			No	No
B	Eagle Green 89	• •	• •	• •		• 🕊			No			No	No
Sed	Eagle Green 89 T	•	•	•	•				No			No	No*
Non-Reinforced Belting	Eagle Red 90		•	• 🕊				•	No			No	No*
Rein	Eagle Clear 95	• •	• •	• ₩					No			Yes	No*
n-R	Eagle Beige 95		• 🗖	0					No			Yes	No
Ž	Eagle White 40D		$\circ \Box$	0 🗆				0 🗆	Yes			Yes	No
	Eagle Blue 55D		• •	• 🕊				• 🕊	Yes			No	No
	Eagle Red 85 CXF		-						No			No	No
	Eagle Quick-Connect	000							No			Yes	No*
	Eagle Ivory 85 SGT PU								No			No	No
	Eagle Green 89 SGT								No			No	No
	Eagle Red 90 SGT								No			No	No
	Eagle White 40D SGT								Yes			No	No
	Eagle Opaque 80 R	0 0	0 0						Yes			No	No
	Eagle Orange 85 R	0 🛛	0 🛛						Yes			Yes	No
	Eagle Hyfen 85 R		•						Yes			Yes	No*
bu	Eagle Ivory 85 R		•	•					Yes			No	No
ed Belting	Eagle Green 89 R	• •	• •	• •	0				Yes			No	No
р С	Eagle Green 89 RT	0	•	0		0			Yes			No	No
	Eagle Beige 95 R		o 🔽	o 🔽					Yes			Yes	No
Reinforc	Eagle Hyfen 95 R								Yes			Yes	No*
Rei	Eagle Hyfen 85 CXF/CXR								Yes			No	No
	Eagle Ivory 85 RSGT PU		•	•					Yes	<u> </u>	•	No	No
	Eagle Red 50D CC			•	•	•	•		Yes			No	No
	Eagle Blue 55D CC			•			•		Yes			No	No
	Eagle Natural 55D CC			\bigcirc			\bigcirc		Yes			Yes	No
	Eagle Green 63D CC			•			٠		Yes			Yes	No
	Eagle Natural 63D CC			\bigcirc			\bigcirc		Yes			Yes	No

* Standard product is not static dissipating. A static dissipative version is available. May be subject to minimum order. Consult factory for availability.

PRODUCT APPLICATIONS

Eagle® Belting provides solutions for all sorts of applications in virtually every industry. For inspiration on bow we can solve your application problem, bere's just a small sampling of our belting products at work. Not sure what you need? Contact us for advice on your specific application.

- 1. Eagle®Hyfen® Ridge-Top on a pop-up diverter conveying wood products.
- 2. Eagle Orange 85 belts conveying pizzas.
- *3.* Wood panels being moved by Eagle Opaque 80 chosen for its non-marking characteristics.
- 4. Eagle Hyfen R on a tray conveyor system, such as found in cafeterias, hospitals, etc.; chosen for its high strength, low stretch characteristics on long centre distances.
- 5. Custom Eagle Blue, approved for direct food contact, used on tomato



- 6. Eagle® Red 90 moving roofing tile; chosen for its excellent abrasion resistance.
- 7. Eagle Twisted O-Rings easily installed without dismantling line shaft.
- 8. Eagle Orange 85 belts driving the roller conveyor.
- 9. Custom Eagle White profile for pear sorting machine.
- **10.** Co-extruded reinforced Eagle Hyfen 85 CXF[®] on conveying system. Lower durometer top surface increases coefficient of friction for excellent grip to convey or move products.
- 11. Eagle Orange 85 on egg conveyor.

				/								Rοι	und	Ве	ltin	g						
	FACIE				1000 m	1/8 ¹¹		3/76"	/ /	1/211	/ /	3/16"	<i>برگ</i> ،	/ /	/ /	1/2"	/ /	3/16"		/ /	/ /	upu.
		®			?) । ।		ſ															
PC	DLYURETHANE BELTING & O-RINGS		44. 2 ×	and the second	E	2m	E .		A North Carlos and Car	en	E,	10.	4. C. C.	- CI	un St	un .		Te.	10.00	10.01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	en e
		N.	*/ ~	A MAR SA	un.	5	్త	6	? ^	6	0	2 02	2	i Q	: 2	7	25	2	8	5 Q	5 ~ v	
	Eagle Opaque 80	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc		\bigcirc			
	Eagle Orange 85			٠			٠		•	•		•					•			٠		
	Eagle Clear 85	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠			٠			٠		
ting	Eagle Ivory 85																					
Sel	Eagle Green 89	٠			٠		٠		٠	٠		٠	٠	٠			٠		٠		٠	
ğ	Eagle Green 89 T	٠		٠	٠	٠	٠		٠	٠		٠	٠				٠		٠		٠	
S	Eagle Red 90	٠		٠	٠	٠		•		٠	٠			٠		٠			•			
Non-Reinforced Belting	Eagle Beige 95					\bigcirc				0		\bigcirc					\bigcirc					
Sei	Eagle Clear 95		٠	٠		٠		٠		٠	٠			٠			٠			٠		
Ļ	Eagle White 40D					\bigcirc	\bigcirc			0		\bigcirc	\bigcirc				\bigcirc		\bigcirc		\bigcirc	
ž	Eagle Blue 55D																					
	Eagle Red 85 CXF																					
	Eagle Clear 85 QC					0	0	0		0	0			0	ο		0	0				
	Eagle Red 85 QC					0	0			0		0	0		0			0				
	Eagle Yellow 85 QC					0		0		0	0			0			0					
	Eagle Clear 85 TOR					٠																
	Eagle Ivory 85 sgt/sgt PU																					
	Eagle Green 89 SGT																					
	Eagle Red 90 SGT																					
	Eagle White 40D SGT																					
	Eagle Opaque 80 R									\odot		\odot					\odot					
	Eagle Orange 85 R						0	0		0	0	•	0	0		0	•			0	0	
	Eagle Hyfen 85 R					0		0		0	0			0		0	0			0		
ing	Eagle Ivory 85 R																					
Reinforced Belting	Eagle Green 89 R																					
ш То	Eagle Green 89 RT					0	0		0	0		0	0				0		0			
ů Ú	Eagle Hyfen 95 R																					
Į	Eagle Beige 95 R											0					0					
ei.	Eagle Hyfen 85 CXF/CXR																					
	Eagle Ivory 85 RSGT/RSGT PU																					
	Eagle Can Cable*					0																
	Eagle Fabricated Belts		٠				•				•		٠					•	٠	٠		

* Can Cable available in Red 50D LCF, Blue 55D, Natural 55D, Green 63D, and Natural 63D

Note: Some diameters and cross sections may be subject to minimum orders. Dimensions are jor reference only. Flat belting available in Eagle Orange 85. See page 26 for cross sections. Additional cross sections, colours, and durometers are available. Contact Applications Engineering for design assistance

Ð
Ę
0
9
-
-

				Ν	ON-REIN	FORCED	BELTIN	I G		
		Eagle Opaque 80	Eagle Orange 85	Eagle Clear 85	Eagle Green 89	Eagle Green 89 T	Eagle Red 90	Eagle Beige 95	Eagle White 40D	Eagle Blue 55D
S	2mm	L040P802M	L040G852M	L04C852M		L04G892M	L04R9002			
Ē	3mm	L040P803M	L040G853M	L04C853M		L04G893M	L04R9003M			
rofil	4mm	L040P804	L040G854	L04C854		L04G894	L04R9004			
₽.	5mm	L040P805M	L040G855M	L04C855M		L04G895M	L04R9005M	L04BE955M	L04BY405M	
P	6mm	L040P806M	L040G856M	L04C856M		L04G896M			LO4BY406M	
Round	7mm	L040P807M	L040G857M	L04C857M		L04G897M	L04R907			
Å	8mm	L040P808M	L040G858M	L04C858		L04G898M	L04R9008	LO4BE958	LO4BY408	
	10mm	L040P8010M	L040G8510M	L04C8510M	L04G8910MS	L04G8910M	L04R9010M	L04BE9510M	L04BY4010M	L04BY5510M
	I2mm		L040G8512M	L04C8512M	L04G8912MS	L04G8912M	L04R9012M		L04BY4012M	
	15mm				L04G8915MS	L04G8915M	L04R9015	L04BE9515M	L04BY4015	L04BY5515
	18mm				L04G8918MS	L04G8918M	L04R9018		L04BY4018	L04BY5518
	20mm				LO4G8920MS	L04G8920			L04BY4020	L04BY5520

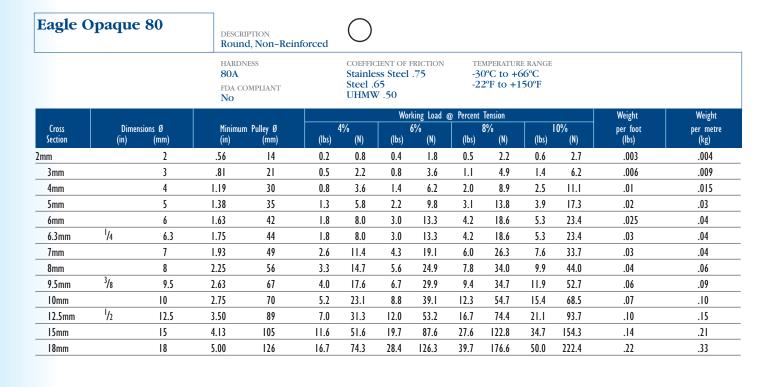
			R E I	INFORCE	D BELTI	N G	
		Eagle Opaque 80 R	Eagle Hyfen 85 R	Eagle Orange 85 R	Eagle Green 89 RT	Eagle Beige 95 R	Eagle Can Cable
S	3/16"		5218009				
Ē	1/4"		5218012				
2	5/16"		5218015				
₽.	3/8"		5218018				
P	1/2"		5218024				
Round Profiles	9/16"		5218027				
8	5/8"		5218030				
	3/4"		5218033				
	5mm				L04G895R		
	6mm			L040G856R	L04G896R		
	7mm				L04G897MR		
	8mm	L040P808MR		L040G858R	L04G898MR		
	10mm	L040P8010MR		L040G8510R	L04G8910MR	LO4BE95IOR	
	I2mm			L040G8512R	L04G8912MR		
	15mm	L040P8015MR		L040G8515R	L04G8915MR	LO4BE9515R	
	18mm				L04G8918MR		
	20mm			L040G8520R			
	3/8" Red 50D CC LCF						4816020
	3/8" Blue 55D CC						4816019
	3/8" Natural 55D CC						4816018
	3/8" Green 63D CC						4817018
	3/8" Natural 63D CC						4899006

G
0
- 2
a
-

				N C	N - R E I N	FORCED	BELTIN	N G		
		Eagle Opaque 80	Eagle Orange 85	Eagle Clear 85	Eagle Ivory 85	Eagle Green 89	Eagle Red 90	Eagle Beige 95	Eagle White 40D	Eagle Blue 55D
rofiles	6mm x 4mm	L040P806X4		L04C856X4						
	8mm x 5mm						L04R900805		L04BY400805	
2	3L		1032030							
ר	3L T-Top		L040G853LX							
>	3L Twin		L040G853LXT							
	Z/10		L040G85Z	L04C85Z		L04G89Z	LO4R90Z		L04BY40Z	LO4BY55Z
	A/13	L040P80A	L040G85A	L04C85A	L04185A	L04G89A	LO4R90A	LO4BE95A	L04BY40A	LO4BY55A
	A Lo-Ridge-Top		L040G85AXL	L04C85AXL						
	A Ridge-Top		L040G85AXH	L04C85AXH		L04G89AXH				
	A Twin		L040G85AXT				L04R90AXT			
	B/17	L040P80B	L040G85B	L04C85B	L04185B	L04G89B	LO4R90B	LO4BE95B	L04BY40B	LO4BY55B
	B Ridge-Top	L040P80BXH				L04G89BX				
	C/22	L040P80C	L040G85C	L04C85C	L04185C	L04G89C	LO4R9OC	L04BE95C	LO4BY40C	
	C Ribbed		L040G85CXRB							
	C Ridge-Top	L040P80CXH								

PART NUMBER LISTING

					R E I N F O	R C E D B	E L T I N G			
		Eagle Opaque 80	Eagle Orange 85	Eagle Hyfen 85 R	Eagle Ivory 85 R	Eagle Green 89 R	Eagle Hyfen 95 R	Eagle Beige 95 R	Eagle Ivory 85 RSGT	Eagle Ivory 85 RSGT PU
S	3L Twin			5299010						
rofil	Z/10		L040G85ZR							
2	A/13	L040P80AR	L040G85AR		L04185AR	L04G89AR	5260200	LO4BE95AR	LO4185ARSG	L04185ARSGPU
•	A Ridge-Top	L040P80ARXH		5299007	LO4185ARXH	L04G89ARXH				
>	A Twin			5299019						
	A Cogged						5220000	L04BE95ARXC		
	B/17	L040P80BR	L040G85BR		L04185BR	L04G89BR	5260300	LO4BE95BR	LO4185BRSG	L04185BRSGPU
	B Ridge-Top	L040P80BRXH		5299009	LO4185BRXH	L04G89BRXH				
	B Cogged						5230000	L04BE95BRXC		
	C/22		L040G85CR		L04185CR	L04G89CR	5260400	L04BE95CR	LO4185CRSG	
	C Ridge-Top				LO4I85CRXH	L04G89CRXH				
	C Cogged						5240000	L04BE95CRXC		
	D/32			5260500						


		NON-REIN	NFORCED
		Eagle Clear 85 QC	Eagle Red 85 QC
es ct	5mm	L04QC855M	L04QR855M
e ji	6mm	L04QC856M	L04QR856M
	8mm	L04QC858M	L04QR858M
ے بی	10mm		LO4QR8510M
÷ P	I2mm		L04QR8512M
Quick-Connect Round Profiles	13mm	L04QC8513	L04QR8513
Õ Z	l 6mm	L04QC8516M	L04QR8516M

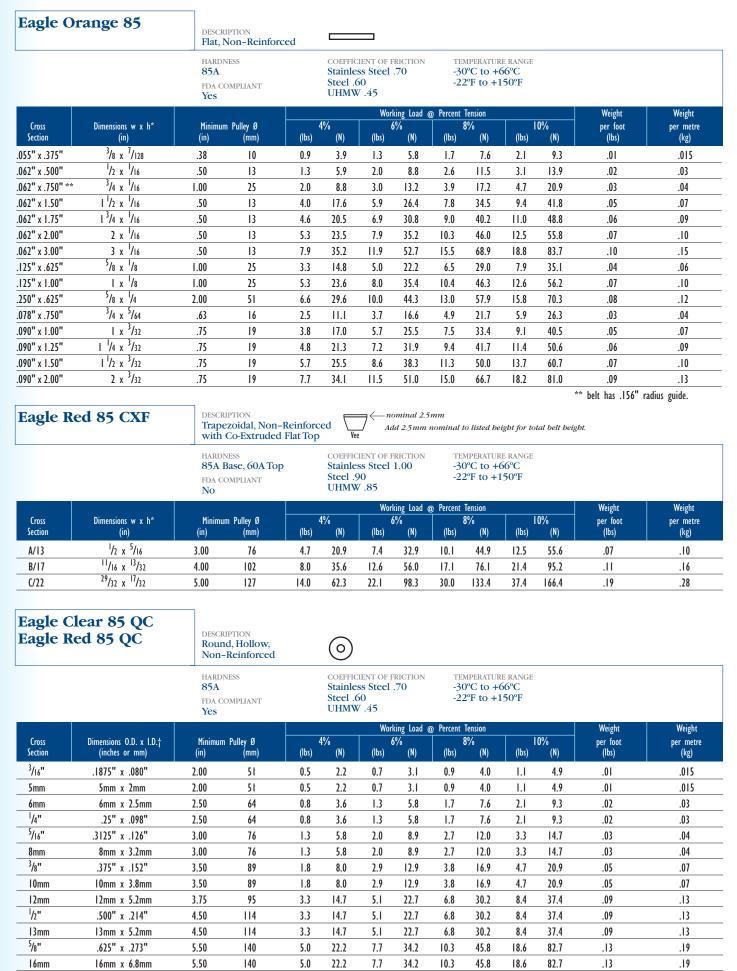
		NON-REINFORCED		REINF	ORCED
		Eagle Red 85 CXF		Eagle Hyfen 85 CXF	Eagle Hyfen 85 CXR
b S	A/13	4924320	A	5260520	5260525
ruded rofiles	B/17	4924330	A Twin	5260572	5260577
5 5	C/22	4924345	В	5260530	5260535
-Exti V Pr			С	5260540	5260545
Ψ >			D	5260550	5260555
ട					

		N O	N - R E I N	FORCED	BELTI	N G
		Eagle Ivory 85 SGT	Eagle Ivory 85 SGT PU	Eagle Green 89 SGT	Eagle Red 90 SGT	Eagle White 40D SGT
SGT files	A/13	LO4I85ASG	L04I85ASGPU	L04G89ASG	L04R90ASG	LO4BY40ASG
	B/17	LO4185BSG	LO4I85BSGPU	LO4G89BSG	LO4R90BSG	LO4BY40BSG
Pro	C/22	L04185CSG		L04G89CSGT	L04R90CSG	L04BY40CSG
>						

		Mini Butt Welding Kit & Components	Butt Welding I	Kit & Components	Overlap Welding	Kit & Components
s	L04MINIWELD110V	Mini Butt Welding Kit 110V	L04FULLWELD110V	Butt Welding Kit 110V	L040VERLWELD110	Overlap Welding Kit 110V
Kits	L04MINIWELD240V	Mini Butt Welding Kit 240V	L04FULLWELD240V	Butt Welding Kit 240V	L040VERLWELD240	Overlap Welding Kit 240V
	L04MINIWELD240E	Mini Butt Welding Kit 240V (Euro)	L04FULLWELD240E	Butt Welding Kit 240V (Euro)	L040VERLWELD240E	Overlap Welding Kit 240V (Euro)
ũ	L04MCLAMP	Mini Clamp	LO4HANDCLAMP	Butt Welder Clamp	L04BCLAMP	Bench Clamp
Welding	LO4HKNIFE110	Hot Knife 110V	LO4HKNIFE110	Hot Knife 110V	LO4HKNIFE110	Hot Knife 110V
Ve	LO4HKNIFE240	Hot Knife 240V	LO4HKNIFE240	Hot Knife 240V	LO4HKNIFE240	Hot Knife 240V
	L04HKNIFE240E	Hot Knife 240V (Euro)	L04HKNIFE240E	Hot Knife 240V (Euro)	LO4HKNIFE240E	Hot Knife 240V (Euro)
-	L04CUTTER	Mini Kit Belt Cutters	LO4SHEARS	Belt Cutters	L04SHEARS	Belt Cutters
Eagle	L04FCUTTER	Belt Flash Trimmers	L04FCUTTER	Belt Flash Trimmers	L04FCUTTER	Belt Flash Trimmers
	L04CASEBLM	Mini Kit Case	L04CASEBKST	Standard Kit Case	L04CASEBKO	Overlap Kit Case
			L04DRILLBITS	Drill Bit Set	LO4DRILLBITS	Drill Bit Set
					L04J0506	Clamping Jaws 5mm & 6mm
					L04J0608	Clamping Jaws 6mm & 8mm
					L04J1012	Clamping Jaws 10mm & 12mm
					L04J1238	Clamping Jaws 1/2" & 3/8"
					L04J1518	Clamping Jaws 15mm & 18mm
					L04J3LACTB	Clamping Jaws 3L & A Cogged
					L04JAB	Clamping Jaws A & B
For	technical assis	tance and drive design help, con	ntact		L04JBC	Clamping Jaws B & C
		neering at +44 (0)870 7577007.			L04JBCC	Clamping Jaws B & C Cogged

For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007. Dimensions are for reference only.

Eagle O _l	paque 80		PTION zoidal, Reinforced		Vee	Ridge-T	op						
		HARDN 80A FDA CC No	ESS PMPLIANT			ss Steel 65	FRICTION	-3	MPERATUR 0°C to +0 2°F to +1	56°C			
							rking Load (Weight	Weight
Cross Section	Dimensions Ø (in) (mm)	Minimum (in)	Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
6mm x 4mm	6 x 4	1.10	28	0.8	3.6	1.6	7.1	2.6	12.7	3.6	17.1	.02	.03
8mm x 5mm	8 x 5	1.38	35	1.7	7.6	3.6	16.0	5.7	25.4	7.7	34.2	.02	.03
3L	9.5 x 6	1.50	39	2.3	10.2	4.7	20.9	7.5	33.4	10.2	45.4	.03	.05
Z/10	10 x 6.5	1.63	42	2.7	12.0	5.6	24.9	8.9	39.6	12.1	53.8	.05	.07
A/13	13 x 8	2.25	56	4.2	18.7	8.8	39.1	14.0	62.3	19.0	84.5	.07	.10
B/17	17 x 11.5	3.00	77	7.3	32.5	15.2	67.6	24.2	107.6	32.8	145.9	.11	.16
B Ridge-Top	17 x 20	5.50	140	7.3	32.4	15.2	67.6	24.2	107.6	32.8	145.9	.13	.19
C/22	22 x 14.5	3.88	98	12.7	56.5	26.7	118.8	42.5	189.0	57.6	256.2	.19	.28
C Ridge-Top	22 x 28	7.75	196	12.7	56.5	26.7	118.8	42.5	189.0	57.6	256.2	.25	.37


 \wedge

For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007. * w (width) is the widest part of the belt. h (height) is the tallest part of the belt. Dimensions are for reference only.

Eagle (Orange	85	DESCRII Round	PTION I, Non-Rei	nforced	\bigcirc								
			HARDN 85A FDA CO Yes	ESS MPLIANT					-3	MPERATUR 0°C to +0 2°F to +1	66°C			
								rking Load					Weight	Weight
Cross Section	Dimensi (in)	ions Ø (mm)	Minimum (in)	Pulley Ø (mm)	(lbs)	1% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
2mm		2	.63	16	0.2	0.9	0.3	1.3	0.4	1.8	0.5	2.2	.003	.004
³ /32"	³ /32		.75	19	0.2	0.9	0.3	1.3	0.4	1.8	0.5	2.2	.004	.006
3mm		3	.94	24	0.5	2.2	0.7	3.1	1.0	4.4	1.2	5.3	.006	.009
4mm		4	1.25	32	0.8	3.6	1.2	5.3	1.6	7.1	1.9	8.5	.01	.015
³ /16"	³ /16		1.50	38	1.1	4.9	1.7	7.6	2.2	9.8	2.7	12.0	.01	.015
5mm		5	1.56	40	1.2	5.3	1.8	8.0	2.4	10.7	3.0	13.3	.02	.03
6mm		6	1.88	48	1.7	7.6	2.6	11.6	3.5	15.6	4.3	19.1	.025	.04
¹ /4"	¹ /4		2.00	51	1.9	8.5	2.9	12.9	3.9	17.3	4.8	21.4	.03	.04
7mm		7	2.20	56	2.4	10.4	3.6	16.1	4.8	21.4	6.0	26.5	.03	.04
5/16"	5/16		2.50	64	3.0	13.3	4.6	20.5	6.1	27.1	7.6	33.8	.04	.06
8mm		8	2.50	64	3.0	13.3	4.6	20.5	6.1	27.1	7.6	33.8	.04	.06
³ /8"	³ /8		3.00	76	4.3	19.1	6.6	29.4	8.8	39.1	10.9	48.5	.06	.09
10mm		10	3.13	80	4.7	20.9	7.3	32.5	9.7	43.I	12.0	53.4	.07	.10
I2mm		12	3.75	96	6.8	30.5	10.6	47.3	14.1	62.9	17.4	77.4	.09	.13
¹ /2"	¹ /2		4.00	102	7.6	33.8	11.8	52.5	15.7	69.8	19.3	85.8	.10	.15
⁹ /16"	⁹ /16		4.50	114	9.7	43.I	14.9	66.3	19.9	88.5	24.5	109.0	.13	.19
⁵ /8"	⁵ /8		5.00	127	11.9	52.9	18.4	81.8	24.5	109.0	30.2	134.3	.16	.24
³ /4"	3/4		6.00	152	17.7	78.7	26.5	117.9	35.3	157.0	43.5	193.5	.23	.34

Eagle Or	range 85	;	DESCRII Trapez Non-H		Vee	T-Top	Crown-To	^{ob}	Twin	Ridge-Top	Lo-Ridge-T	op Hi-Ridge-1	7 (The second se	Ribbed Wing-Top
			HARDNI 85A FDA CO Yes	ESS					-3	MPERATUI 0°C to + 2°F to +	66°C			
									@ Percent				Weight	Weight
Cross Section	Dimensions (in)	Ø (mm)	Minimum (in)	Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
6mm x 4mm		6 x 4	1.25	32	0.9	4.0	1.6	7.1	2.2	9.8	2.8	12.5	.02	.03
3L	³ /8 x ⁷ /32		1.75	45	2.2	9.8	3.7	16.5	5.2	23.1	6.5	28.9	.03	.04
3L T-Top	⁹ /16 x ¹⁹ /64		2.38	60	3.2	14.2	5.5	24.5	7.7	34.2	9.7	43.I	.05	.07
3L Crown-Top	⁹ /16 x ¹ /4		2.00	51	3.2	14.2	5.5	24.5	7.7	34.2	9.7	43.I	.05	.07
3L Twin	¹⁵ /16 x ¹⁷ /64		2.13	54	6.1	27.I	10.3	45.8	14.5	64.5	18.4	81.8	.10	.15
Z/10		10 x 6	1.88	48	2.4	10.7	4.1	18.2	5.8	25.8	7.3	32.5	.05	.07
A/13		13 x 8	2.50	64	4.0	17.8	6.8	30.2	9.6	42.7	12.2	54.3	.07	.10
A Lo-Ridge-Top	p ¹ /2 x ⁷ /16		2.50	64	4.0	17.8	6.8	30.2	9.6	42.7	12.2	54.3	.07	.10
A Ridge-Top		13 x 16	5.00	127	4.0	17.8	6.8	30.2	9.6	42.7	12.2	54.3	.09	.13
A Hi-Ridge-Top	o ¹ /2 x ⁵ /8		5.00	127	6.7	29.8	11.3	50.3	15.9	70.7	20.1	89.4	.09	.13
A Twin I	1 ³ /16 x ⁵ /16		2.50	64	8.2	36.5	14.0	62.3	19.6	87.2	24.8	110.3	.15	.22
AA	¹ /2 x ¹³ /32		3.25	83	5.8	25.8	9.8	43.6	13.7	60.9	17.4	77.4	.09	.13
		17 x 11.5	3.25	83	7.0	31.1	11.8	52.5	16.6	73.8	21.0	93.4	.11	.16
	¹¹ /16 x ¹³ /32		3.25	83	7.0	31.1	11.8	52.5	16.6	73.8	21.0	93.4	.11	.16
	¹¹ /16 x ⁵ /8		3.25	83	7.0	31.1	11.8	52.5	16.6	73.8	21.0	93.4	.11	.16
	¹¹ /16 x ⁹ /16		4.25	108	8.8	39.1	14.9	66.3	20.9	93.0	26.5	117.9	.16	.24
		22 x 14.5	4.50	114	12.1	53.8	20.6	91.6	28.9	128.5	36.6	162.8	.19	.28
	²⁹ /32 x ¹⁷ /32		4.50	114	12.1	53.8	20.6	91.6	28.9	128.5	36.6	162.8	.19	.28
	1 ⁵ /16 x ³ /4		7.00	178	25.2	2.	42.7	189.9	59.9	266.4	75.8	337.2	.38	.57
E Ribbed I	¹¹ /16 x 1 ³ /32		15.00	381	47.8	212.6	81.1	360.7	113.9	505.9	144.0	640.5	.71	1.06

*For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007. * w (width) is the widest part of the belt. b (beight) is the tallest part of the belt. Dimensions are for reference only.*

For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007.

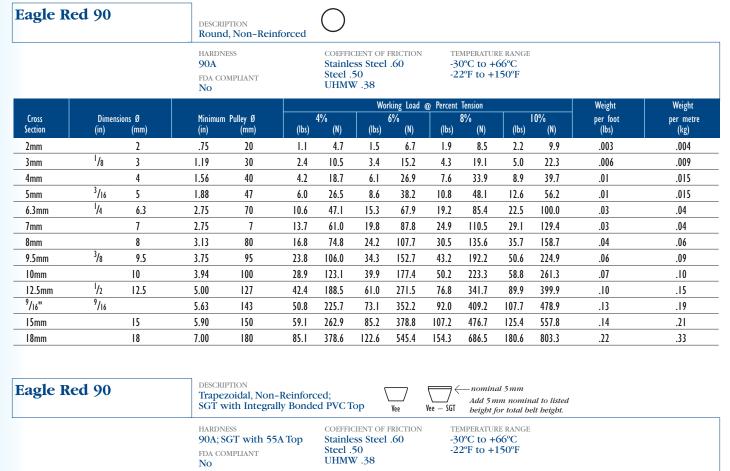
* w (width) is the widest part of the belt. b (beight) is the tallest part of the belt, NOT including the nominal 2.5mm of co-extruded belting. † 0.D. is the outer diameter of the belt. I.D. is the inner diameter of the belt. Dimensions are for reference only.

Eagle Ivory 85

DESCRIPTION Trapezoidal, Non-Reinforced

SGT with Integrally Bonded Polyurethane Top

Vee


— nominal 5 mm Add 5 mm nominal to listed I beight for total belt beight.

HARDNESS 85A; SGT with 70A Top FDA COMPLIANT No COEFFICIENT OF FRICTION Stainless Steel .70 Steel .60 UHMW .45 TEMPERATURE RANGE -30°C to +66°C -22°F to +150°F

			Г	NO CHAW IT													
		Minimum P	ulley Ø	Minimum P	ulley Ø			Wor	king Load @	D Percent	Tension			Weight	t	Weight	
Cross	Dimensions w x h*	(in)		(mm)			4%		6%		8%		0%	per foot	(lbs)	per metre	e (kg)
Section	(mm)	(lvory 85)	(SGT)	(lvory 85)	(SGT)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(Ivory 85)	(SGT)	(Ivory 85)	(SGT)
8mm x 5mm	8 x 5	1.88		48		4.4	19.5	6.7	29.7	8.8	39.1	10.6	47.3	.02		.03	
 Z/10	10 x 6.5	2.00		52	_	7.1	31.7	10.9	48.4	14.3	63.7	17.3	77.0	.05	_	.07	_
A/13	13 x 8	2.50	3.00	64	76	11.4	50.7	17.4	77.4	22.9	101.9	27.7	123.2	.07	.08	.10	.12
B/17	17 x 11.5	3.60	4.10	92	104	20.2	89.8	30.9	137.4	40.6	180.6	49.I	218.4	.11	.12	.16	.18
C/22	22 x 14.5	4.50	5.00	116	127	33.5	149.0	51.1	227.3	67.I	298.5	81.3	361.6	.19	.20	.28	.30

Eagle (Green 89	Roun	IPTION d, Smooth o Reinforced	or Texture	d, (\supset							
		HARDY 89A FDA CO NO	NESS OMPLIANT			ss Steel	FRICTION .65	(Te St St	DEFFICIENT extured) ainless St eel .40 HMW .30	teel .50	lion	TEMPERATURE RAN -30°C to +66°C -22°F to +150°F	
	.				407		rking Load (100/	Weight	Weight
Cross Section	Dimensions Ø (mm)	Minimur (in)	n Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
2mm	2	.75	19	0.2	0.9	0.4	1.8	0.5	2.2	0.7	3.1	.003	.004
3mm	3	1.00	27	0.6	2.7	0.9	4.0	1.2	5.3	1.5	6.7	.006	.009
4mm	4	1.44	36	1.0	4.4	1.6	7.1	2.1	9.3	2.6	11.6	.010	.015
5mm	5	1.75	45	1.5	6.7	2.4	10.7	3.3	14.7	4.1	18.2	.02	.03
6mm	6	2.13	54	2.2	9.8	3.5	15.6	4.7	20.9	5.9	26.2	.025	.04
7mm	7	2.50	63	3.0	13.3	4.7	20.9	6.4	28.5	8.0	35.6	.03	.04
8mm	8	2.83	72	3.9	17.3	6.2	27.6	8.4	37.4	10.4	46.3	.04	.06
10mm	10	3.50	90	6.1	27.1	9.7	43.I	13.1	58.3	16.3	72.5	.07	.10
l2mm	12	4.25	108	8.7	38.7	13.9	61.8	18.9	84. I	23.5	104.5	.09	.13
15mm	15	5.25	135	13.6	60.5	21.7	96.5	29.6	131.7	36.6	162.8	.14	.21
18mm	18	6.38	162	18.8	83.6	30.9	137.4	42.5	189.0	53.0	235.7	.22	.33
20mm	20	7.00	180	23.2	103.2	38.2	169.9	52.4	233.I	65.5	291.3	.23	.34

	Green 89 Green 89			DESCRIPTION Trapezoidal SGT With In				Гор	Vee	Ridge-Top	>	7` Ада		n ninal to listea l belt beight.	1		
				HARDNESS 89A; SGT w FDA COMPLIAN No		\ Тор				-3	mperatui 0°C to + 2°F to +	66°C					
Minimum Pulley Ø Minimum					Minimum Pulley Ø Working Load @ Percent Tension									Weigh	t	Weigh	ht
Cross Section	Dimensions w x h (mm)	(in) (Green 89)	(SGT)	(mm) (Green 89)	(SGT)	(lbs)	4% 6% (N) (lbs) (N)		(lbs)	8% (N)	(lbs)	10% (N)	per foot (Green 89)	(lbs) (SGT)	per metre (Green 89)		
Z/10	10 x 6.5	2.30		59		.9	52.9	18.2	80.9	23.8	105.9	28.7	127.7	.05		.07	
A/13	13 x 8	2.80	3.30	72	84	20.5	91.2	31.3	139.2	41.0	182.4	49.5	220.2	.07	.08	.10	.12
A Ridge-Top	3 x 6	5.70		144		20.5	91.2	31.3	139.2	41.0	182.4	49.5	220.2	.09	_	.13	
B/17	17 x 11.5	4.10	4.60	104	117	36.4	161.9	55.6	247.3	72.7	323.4	87.7	390.I	.11	.12	.16	.18
B Ridge-Top	17 x 20	7.00		180		36.4	161.9	55.6	247.3	72.7	323.4	87.7	390.I	.13		.19	
C/22	22 x 14.5	5.10	5.60	130	142	61.7	274.4	94.3	419.4	123.4	548.9	148.8	661.9	.19	.20	.28	.30

		Minimum	Pulley Ø	Minimum F	Pulley Ø			Wor	king Load (@ Percent	Tension			Weigh	it	Weigh	ıt
Cross	Dimensions w x h*	(in		(mn			4%		%		8%		0%	per foot		per metr (Red 90)	e (kg)
Section	(mm)	(Red 90)	(SGT)	(Red 90)	(SGT)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(Red 90)	(SGT)	(Red 90)	(SGT)
8mm x 5i	mm 8 x 5	2.00	_	50	_	9.5	42.I	15.0	66.8	19.9	88.7	24.0	106.9	.02		.03	
Z/10	10 x 6.5	2.50	_	65	—	14.8	65.8	23.4	104.3	31.1	138.5	37.5	167.0	.05		.07	_
A/13	13 x 8	3.13	4.13	80	105	24.I	107.0	38.I	169.5	50.6	225.3	61.0	271.5	.07	.08	.10	.12
B/17	17 x 11.5	4.50	5.50	115	140	43.9	195.2	69.5	309.3	92.4	411.0	111.3	495.3	.11	.12	.16	.18
C/22	22 x 14.5	5.75	6.75	145	172	72.2	321.2	114.4	508.9	152.0	676.2	183.2	814.9	.19	.20	.28	.30

Eagle B	leige 95	DESCRI Round	PTION I, Non-Rein t	forced	\bigcirc								
		HARDN 95A FDA CO Yes	ESS MPLIANT			ess Steel 45	FRICTION .55	-3	MPERATUR 0°C to + 2°F to +1	66°C			
						Wo	rking Load (@ Percent	Tension			Weight	Weight
Cross Section	Dimensions Ø (mm)	Minimum (in)	Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
5mm	5	2.00	50	5.3	23.6	7.5	33.4	9.4	41.8	11.0	48.8	.02	.03
8mm	8	3.10	80	13.6	60.5	19.2	85.6	24.0	106.9	28.1	125.1	.04	.06
10mm	10	3.90	100	21.2	94.5	30.1	133.8	37.6	167.1	43.9	195.4	.07	.10
15mm	15	5.90	150	47.8	212.5	67.7	301.0	84.5	375.9	98.8	439.6	.14	.21

For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007. * w (widtb) is the widest part of the belt. b (height) is the tallest part of the belt, NOT including the nominal 5 mm of the integrally bonded top surface belting. Dimensions are for reference only.

Eagle F	Beige 95	DESCRI Trape	IPTION zoidal, Non-l	Reinford	ced Vee	7							
		HARDN 95A FDA CC Yes	iess Dmpliant			ss Steel 45	FRICTION .55	-3	MPERATUI 0°C to + 2°F to +				
						Wo	rking Load @	Percent	Tension			Weight	Weight
Cross	Dimensions w x h*	Minimum	n Pulley Ø		4%		6%		8%		0%	per foot	per metre
		(*).		<i>a</i> 1 × 1	(8.1)	(m. 5)	(11)		(81)	<i>(</i> 1)	(81)		- a x
Section	(mm)	(in)	(mm)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(kg)
Section A/13	(mm) 3 x 8	(in) 3.10	(mm) 80	(lbs) 6.8	(N) 74.7	(lbs) 25.2	(N)	(lbs) 32.5	(N) 144.6	(lbs) 38.9	(N) 173.0		(kg) .10
	, ,						()					. (lbs)	

Eagle C	Clear 95	DESCRI Round	PTION d, Non-Rein	forced	\bigcirc								
		HARDN 95A FDA CC Yes	IESS DMPLIANT			ss Steel 45	FRICTION .55	-3	mperatur 0°C to +(2°F to +1	66°C			
						Wo	rking Load (@ Percent	Tension			Weight	Weight
Cross Section	Dimensions Ø (in)	Minimum (in)	n Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
³ /32"	3/32	1.00	25	0.7	3.1	1.2	5.3	1.5	6.7	1.9	5.3	.004	.006
l/8"	¹ /8	1.25	32	0.9	4.0	1.4	6.2	1.7	7.6	2.1	6.2	.01	.015
³ /16"	3/16	1.88	48	2.0	8.9	3.0	13.3	3.9	17.3	4.6	13.3	.01	.015
l/4"	¹ /4	2.50	64	3.6	16.0	5.4	24.0	6.9	30.7	8.2	24.0	.03	.04
⁵ /16"	5/16	3.13	79	5.7	25.4	8.4	37.4	10.8	48.0	12.9	37.4	.04	.06
³ /8"	3/8	3.75	95	8.2	36.5	12.1	53.8	15.6	69.4	18.5	53.8	.06	.09
¹ /2"	¹ /2	5.00	127	14.5	64.5	21.6	96.I	27.7	123.2	32.9	96.I	.10	.15
⁹ /16''	⁹ /16	5.63	143	18.4	81.8	27.3	121.4	35.0	155.7	41.7	121.4	.13	.19
⁵ /8"	5/8	6.25	159	22.7	101.0	33.7	149.9	43.3	192.6	51.4	149.9	.16	.24
³ /4"	3/4	7.50	190	32.7	145.4	48.5	215.7	62.3	277.1	74.I	215.7	.23	.34

Eagle Cle	ar 95	DESCRIF Trapez Non-F			Vee	T-Top		win	Lo-Ridge-Top	Hi-Ridg	je-Top A	A / BB Ribbed	
		HARDNH 95A FDA COI Yes	ESS MPLIANT			ess Steel 45	FRICTION .55	-3	mperatui 0°C to + 2°F to +	66°C			
						Woi	rking Load	@ Percent	Tension			Weight	Weight
Cross Section	Dimensions w x h* (in)	Minimum (in)	Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
3L	³ /8 x ⁷ /32	2.19	56	4.1	18.2	6.6	29.4	8.9	39.6	10.8	48.0	.03	.04
3L T-Top	⁹ /16 x ¹⁹ /64	2.50	64	6.1	27.1	9.9	44.0	13.3	59.2	16.2	72.1	.05	.07
3L Twin	¹⁵ /16 x ¹⁷ /64	2.50	64	11.4	50.7	18.6	82.7	25.0	111.2	30.5	135.7	.10	.15
A/13	¹ /2 x ⁵ /16	3.13	79	7.6	33.8	12.3	54.7	16.6	73.8	20.2	89.8	.07	.10
A Lo-Ridge-Top	¹ /2 x ⁷ /16	3.13	79	7.6	33.8	12.3	54.7	16.6	73.8	20.2	89.8	.07	.10
A Hi-Ridge-Top	¹ /2 x ⁵ /8	6.00	152	12.5	55.6	20.3	90.3	27.4	121.9	33.4	148.6	.09	.13
A Twin	³ /16 x ⁵ /16	3.13	79	15.4	68.5	25.1	111.6	33.8	150.3	41.2	183.3	.15	.22
AA	1/2 x ¹³ /32	4.13	105	10.8	48.0	17.6	78.3	23.7	105.4	28.8	128.1	.09	.13
B/17	¹¹ /16 x ¹³ /32	4.13	105	13.1	58.3	21.3	94.7	28.6	127.2	34.8	154.8	.11	.16
BB	¹¹ /16 x ⁹ /16	5.63	143	16.5	73.4	26.8	119.2	36.1	160.6	44.0	195.7	.16	.24
C/22	²⁹ /32 x ¹⁷ /32	5.38	136	22.7	101.0	37.0	164.6	49.8	221.5	60.7	270.0	.19	.28
D Ribbed	1 ⁵ /16 x ³ /4	8.50	216	47.1	209.5	76.8	341.6	103.3	459.5	125.9	560.0	.38	.57

For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007. * *w (widtb) is the widest part of the belt. b (height) is the tallest part of the belt. Dimensions are for reference only.*

Eagle W	White 40I)		CRIPTION und, Non-	Reinforce	ed	\bigcirc										
			MAT	rerial yester			HARDNH 40D FDA COL Yes			St. St.	DEFFICIENT ainless S eel .45 HMW .3	teel .55		TEMPERAT -30°C to -22°F to	+66°C		
							105	Wor	king Load (Weigh		Weig	t
Cross	Dimensions	ø	Minir	mum Pulley Ø		L	4%		6%		8%		10%	per fo		per n	
Section	(mm)		(in)	(mm)		(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)		(kg	
5mm	5		2.00	50		5.2	23.1	8.0	35.6	10.5	46.7	12.6	56.0	.02		.0.	
6mm	6		2.38	60		7.5	33.7	11.5	51.2	15.1	67.2	18.2	80.9	.025)	.04	
8mm	8		3.10	80		3.3	59.2	20.5	91.2	26.8	119.2	32.3	143.7	.04		.0	
10mm	10		4.00	100		0.8	92.5	32.0	142.2	41.9	186.5	50.5	224.6	.07			
12mm	12		4.75	120		9.9	133.2	46.0	204.7	60.4	268.5	72.7	323.5	.09		.l. د	
15mm	15		5.90	150		6.8 7.4	208.1 299.7	71.9	319.9 460.6	94.3 135.8	419.6 604.2	113.6	505.4 727.8	.14		.2	
18mm 20mm	20		7.10	200		3.2	370.0	103.0	568.7	155.0	745.9	202.0	898.5	.22		.3	
2011111	20		1.00	200	0	5.2	570.0	121.7	300.7	107.7	/43.7	202.0	070.3	.23		.),	
Eagle W	White 40I)	Tra SG' MAT Pol	CRIPTION pezoidal, I T with Int FERIAL	egrally Bo		d PVCT	<u>^</u>	Vee	St	SGT Add	l' of fric'	ominal to l	TEMPERAT	ure ran +66°C	IGE	
			SG	T with 55	А Тор			MPLIANT	N 000	T 11	eel .45 HMW .3	5		-22°F to	+150°F		
		M: : D		M: :	~		White 4		y; Not SG			, 					
Cross Di	mensions w x h*	Minimum Pu	lley Ø	Minimum Pulle	ey Ø		4%	Wo	orking Load 6%	@ Percent	t Tension 8%		10%	Weig per foot		Weig per metr	
Section		(IN) White 40D)	(SGT) ((mm) White 40D)	(SGT)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(White 40D		(White 40D	
8mm x 5mm	8 x 5	2.60	_	65		6.3	28.0	10.8	48.0	14.8	65.8	18.3	81.4	.02		.03	_
Z/10	10 x 6	3.10		80		9.4	41.8	6.	71.6	22.2	98.7	27.4	121.9	.05		.07	_
A/13	13 x 8	4.00	4.50	102	114	15.7	69.8	26.9	120.0	37.0	164.6	45.8	203.7	.13	.08	.19	
B/17	17 x 11	5.50	6.50	140	160	27.I	120.5	46.4	206.4	64.0	284.7	79.1	351.8	.19	.12	.28	
C/22	22 x 14	7.00	7.50	178	180	47.3	210.4	80.8	359.4	111.4	495.5	137.8	612.9	.28	.20	.42	
Eagle B	Blue 55D		Ro	CRIPTION und, Non– FERIAL yester	Reinforce	ed	HARDNI 55D	ESS		St: St	DEFFICIENT ainless S eel .40	teel .50	TION	TEMPERAT -30°C to -22°F to	+80°C		
							No			U	HMW .3	0					
									king Load (Weig		Weig	
Cross Section	Dimensions (mm)	Ø	Minii (in)	mum Pulley Ø (m		(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per fo (lbs)		per m (kg	
IOmm	10		5.00	12	·	9.3	174.6	60.4	268.7	78.5	349.2	93.0	413.8	.07		۰۰» ۱۱.	
15mm	15		7.50	12		8.3	392.9	135.9	604.5	176.7	785.8	209.3	931.0	.14		.21	
18mm	18		9.00	22		7.2	565.8	195.7	870.5	254.4	1131.5	301.4	1340.6	.22		.33	
20mm	20		10.00	25		7.0	698.5	241.6	1074.7	314.1	1396.9	372.1	1655.1	.23		.34	
agle B	Blue 55D		MAT	CRIPTION I pezoidal , I ITERIAL I Vester	Non-Reir	nforc	HARDNI 55D FDA COI			St. St.	DEFFICIENT ainless S eel .40	teel .50		TEMPERAT -30°C to -22°F to	+80°C		
							No				HMW .3	0					
Cross Section	Dimensions w (mm)	x h*	Minim (in)	num Pulley Ø (mi	m)	(lbs)	4% (N)		rking Load (6% (N)		Tension 8% (N)	(lbs)	10% (N)	Weigt per fo (lbs)	ot	Weig per m (kg)	etre
7/10		_	2 12	, v	,	, , , ,	00.0	22.7	145.2	41.0	102 /	47.5	211.2	00		07	

3.13 Z/10 10 x 6.5 80 22.2 98.8 32.7 145.2 41.0 182.4 47.5 211.2 .05 A/13 13 x 8 4.00 102 35.5 158.1 52.3 232.4 65.6 291.8 76.0 337.9 .07 17 x 11.5 272.2 112.9 130.8 B/17 5.50 140 61.2 90.0 400.I 502.4 581.7 11. C/22 22 x 14.5 7.00 178 108.5 482.7 159.5 709.5 200.3 890.8 231.9 1031.5 .19

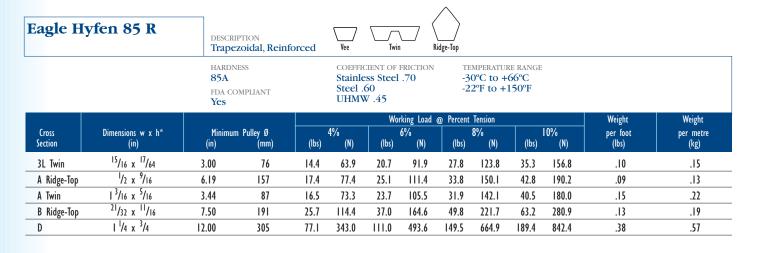
For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007.

* w (width) is the widest part of the belt. b (beight) is the tallest part of the belt, NOT including the nominal 5 mm of the integrally bonded top surface belting.

.07

.10

.21


.28

Dimensions are for reference only.

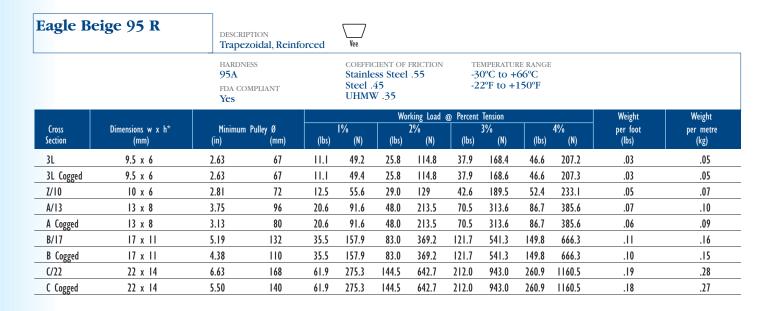
Eagle O	paque 8	0 R		SCRIPTION Dund, Reinforced		\bigcirc										
			80	A COMPLIANT			ess Steel 65	FRICTION 75	-3	MPERATUR 0°C to +(2°F to +1	66°C					
Cross Section	Dimensions (mm)	Ø	Mini (in)	imum Pulley Ø (mm)	(lbs)	4% (N)		rking Load (6% (N)		Tension 8% (N)	(lbs)	10% (N)	Weigh per foo (lbs)	ot	Weig per mo (kg)	etre
8mm	8		3.13	80	4.3	19.2	10.7	47.6	15.4	68.4	19.0	84.6	.04		.06	
10mm	10		3.93	100	9.74	43.I	24.1	107.2	34.6	153.9	42.8	190.3	.06		.09	
15mm	15		5.90	150	21.8	97.0	54.2	241.1	77.9	346.4	96.3	428.2	.14		.21	
Eagle O	paque 8	0 R		SCRIPTION apezoidal, Reinfo	orced	Vee	Ridge-Te) op								
			80	A COMPLIANT			ess Steel 65	FRICTION	-3	MPERATUR 0°C to +0 2°F to +1	66°C					
						10/		rking Load (1	40/	Weigh		Weigl	
Cross Section	Dimensions w (mm)	x h*	Mini (in)	imum Pulley Ø (mm)	(lbs)	1% (N)	(lbs)	2% (N)	(lbs)	3% (N)	(lbs)	4% (N)	per fo (lbs)	ot	per me (kg)	
A/13	3 x 8		3.13	80	6.2	27.5	16.7	74.4	25.2	111.9	30.8	136.8	.07		.](
A Ridge-Top	13 x 16		6.30	160	6.2	27.5	16.7	74.4	25.2	111.9	30.8	136.8	.09			
B/17	17 x 11		4.38	110	11.0	48.8	29.7	132.0	44.6	198.4	54.5	242.6	.11		.10	5
B Ridge-Top	17 x 20		7.88	200	11.0	48.8	29.7	132.0	44.6	198.4	54.5	242.6	.13		.19)
	70ry 85 R		на 85	T with Integrall RDNESS A; SGT with 70A A COMPLIANT		COEFFI	CIENT OF ess Steel 60	FRICTION	-3	Ridge-Top MPERATUR 0°C to +0 2°F to +1	66°C		right for total	oeu neig	<i>р</i> и	
			110													
		Minimum P		Minimum Pulley Ø			Wo	rking Load (@ Percent	Tension			Weigh	t	Weigl	nt
Cross Section	Dimensions w x h* (mm)		ulley Ø		(lbs)	1% (N)		rking Load (2% (N)		Tension 3% (N)	(lbs)	4% (N)	Weigh per foot (Ivory 85 F	(lbs)	Weigl per metro (Ivory 85 I	e (kg)
Section Z/10	(mm) 10 x 6	(in) (Ivory 85 R) 2.38	ulley Ø (SGT)	Minimum Pulley Ø (mm) (Ivory 85 R) (SGT) 60 —	(lbs) 2.9	(N) 12.7	(lbs) 8.6	2% (N) 38.2	(lbs) 3.7	3% (N) 60.8	(lbs) 17.4	(N) 77.6	per foot (Ivory 85 F .05	(lbs) K) (SGT)	per metre (Ivory 85 I .07	e (kg) R) (SGT)
Section Z/10 A/13	(mm) 10 x 6 13 x 8	(in) (Ivory 85 R) 2.38 3.13	ulley Ø	Minimum Pulley Ø (mm) (Ivory 85 R) (SGT) 60 — 80 92	(lbs) 2.9 5.0	(N) 12.7 22.2	(lbs) 8.6 15.1	2% (N) 38.2 67.0	(lbs) 13.7 24.0	3% (N) 60.8 106.7	(lbs) 17.4 30.6	(N) 77.6 136.1	per foot (Ivory 85 F .05 .07	(lbs)	per metri (Ivory 85 I .07 .10	e (kg)
Section Z/10 A/13 A Ridge-Top	(mm) 10 x 6 13 x 8 13 x 16	(in) (Ivory 85 R) 2.38 3.13 6.30	ulley Ø (SGT) 3.60 	Minimum Pulley Ø (mm) (Ivory 85 R) (SGT) 60 — 80 92 160 —	(lbs) 2.9 5.0 5.0	(N) 12.7 22.2 22.2	(lbs) 8.6 15.1 15.1	2% (N) 38.2 67.0 67.0	(lbs) 13.7 24.0 24.0	3% (N) 60.8 106.7 106.7	(lbs) 17.4 30.6 30.6	(N) 77.6 136.1 136.1	per foot (Ivory 85 F .05 .07 .09	(lbs) k) (SGT) .08	per metro (Ivory 85 I .07 .10 .13	e (kg) R) (SGT) .12
Section Z/10 A/13 A Ridge-Top B/17	(mm) 10 x 6 13 x 8 13 x 16 17 x 11	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38	ulley Ø (SGT)	Minimum Pulley Ø (mm) (Ivory 85 R) (SGT) 60 — 80 92 160 — 110 124	(lbs) 2.9 5.0 5.0 8.8	(N) 12.7 22.2 22.2 39.4	(lbs) 8.6 15.1 15.1 26.7	2% (N) 38.2 67.0 67.0 118.8	(lbs) 13.7 24.0 24.0 42.5	3% (N) 60.8 106.7 106.7 189.2	(lbs) 17.4 30.6 30.6 54.3	(N) 77.6 136.1 136.1 241.3	per foot (Ivory 85 F .05 .07 .09 .11	(lbs) K) (SGT)	per metri (Ivory 85 1 .07 .10 .13 .16	e (kg) R) (SGT)
Section Z/10 A/13 A Ridge-Top	(mm) 10 x 6 13 x 8 13 x 16	(in) (Ivory 85 R) 2.38 3.13 6.30	ulley Ø (SGT) 3.60 	Minimum Pulley Ø (mm) (Ivory 85 R) (SGT) 60 — 80 92 160 —	(lbs) 2.9 5.0 5.0	(N) 12.7 22.2 22.2	(lbs) 8.6 15.1 15.1	2% (N) 38.2 67.0 67.0	(lbs) 13.7 24.0 24.0	3% (N) 60.8 106.7 106.7	(lbs) 17.4 30.6 30.6	(N) 77.6 136.1 136.1	per foot (Ivory 85 F .05 .07 .09	(lbs) k) (SGT) .08	per metro (Ivory 85 I .07 .10 .13	e (kg) R) (SGT) .12
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88	ulley Ø (SGT) 3.60 4.88 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 —	(lbs) 2.9 5.0 5.0 8.8 8.8	(N) 12.7 22.2 22.2 39.4 39.4	(lbs) 8.6 15.1 15.1 26.7 26.7	2% (N) 38.2 67.0 67.0 118.8 118.8	(lbs) 13.7 24.0 24.0 42.5 42.5	3% (N) 60.8 106.7 106.7 189.2 189.2	(lbs) 17.4 30.6 30.6 54.3 54.3	(N) 77.6 136.1 136.1 241.3 241.3	per foot (Ivory 85 F .05 .07 .09 .11 .13	(lbs) (SGT) .08 .12 .12	per metr (Ivory 85 I .10 .13 .16 .19	e (kg) (SGT) .12 .18 .18
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00	ulley Ø (SGT) 3.60 4.88 6.00 5.00	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6	(N) 12.7 22.2 22.2 39.4 39.4 65.1	(lbs) 8.6 15.1 15.1 26.7 26.7 44.2	2% (N) 38.2 67.0 67.0 118.8 118.8 196.7	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1	(lbs) 17.4 30.6 30.6 54.3 54.3 54.3 89.8	(N) 77.6 136.1 136.1 241.3 241.3 399.4	per foot (lvory 85 F .05 .07 .09 .11 .13 .19	(lbs) (SGT) .08 .08 .12 .20	per metri (Ivory 85 I .07 .10 .13 .16 .19 .28	e (kg) (SGT) .12 .18 .18
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00	ulley Ø (SGT) 3.60 4.88 6.00 Ro Ro HAI	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION Dund, Reinforced RDNESS A A COMPLIANT T	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFIG	(lbs) 8.6 15.1 15.1 26.7 26.7 44.2 44.2 44.2 CIENT OF rss Steel 60	2% (N) 38.2 67.0 67.0 118.8 118.8 118.8 196.7 196.7 FRICTION	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 70.4 TTE -3	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8	(N) 77.6 136.1 136.1 241.3 241.3 399.4 399.4	per foot (lvory 85 F .05 .07 .09 .11 .13 .19	(lbs) (SGT) .08 .08 .12 .20	per metri (Ivory 85 I .07 .10 .13 .16 .19 .28	e (kg) (SGT) .12 .18 .18
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top Eagle H	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Tyfen 85	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUND, Reinforced RDNESS A COMPLIANT 's imum Pulley Ø	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFI(Stainle Steel . UHMN 4%	(lbs) 8.6 15.1 15.1 26.7 26.7 26.7 44.2 44.2 44.2 44.2 CIENT OF SS Steel 60 V .45 Wo	2% (N) 38.2 67.0 67.0 118.8 118.8 196.7 196.7 196.7 FRICTION .70	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 TTE -3 -2 2 Percent	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 313.1 MPERATUR 0°C to +0 2°F to +1 Tension 8%	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 80.6 56°C 150°F	(N) 77.6 136.1 136.1 241.3 241.3 399.4 399.4	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25	(lbs) (SGT) .08 .08 .12 .12 .20 .20	per metri (lvory 85 l .07 .10 .13 .16 .19 .28 .37 .37	e (kg) (SGT) .12 .18 .18 .30 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top Eagle H	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Tyfen 85	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 3.60 4.88 6.00 Ro BES Ro HAI 85 FD2 Ye Ye Mini (in)	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUND, Reinforced RDNESS A COMPLIANT 'S S	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6 (lbs)	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFIG Stainle Steel . UHMV 4% (N)	(lbs) 8.6 15.1 15.1 26.7 26.7 26.7 44.2	2% (N) 38.2 67.0 67.0 118.8 118.8 118.8 196.7 196.7 FRICTION .7O	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 TE -3 -2 Percent (lbs)	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 MPERATUR 0°C to +0 2°F to +1 Tension	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 89.8 (lbs)	(N) 77.6 136.1 136.1 241.3 241.3 399.4 399.4	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25	(lbs) (SGT) .08 .08 .12 .12 .20 .20	per metri (Ivory 85 I .07 .10 .13 .16 .19 .28 .37	e (kg) (SGT) .12 .18 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top Eagle H Eagle H	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Lyfen 85 Dimensions (in) 3/16 1/4	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUNCL REINFORCED RDNESS A A COMPLIANT IS imum Pulley Ø (mm) (mm)	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFI(Stainle Steel . UHMN 4%	(lbs) 8.6 15.1 15.1 26.7 26.7 26.7 44.2 44.2 44.2 44.2 CIENT OF SS Steel 60 V .45 Wo	2% (N) 38.2 67.0 67.0 118.8 118.8 118.8 196.7 196.7 196.7 196.7 rking Load (6% (N)	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 TTE -3 -2 2 Percent	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 MPERATUR 0°C to +(2°F to +1 Tension 8% (N)	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 80.6 56°C 150°F	(N) 77.6 136.1 136.1 241.3 241.3 399.4 399.4 10% (N)	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25	(lbs) . (SGT) . 08 	per metri (lvory 85 f .07 .10 .13 .16 .19 .28 .37 .37 	e (kg) (SGT) .12 .12 .18 .30 .30 .30 .30 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top Eagle H Section ³ /16" ¹ /4" ⁵ /16"	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Lyfen 85 Dimensions (in) ³ /16 ¹ /4 ⁵ /16	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUNCH, Reinforced RDNESS A COMPLIANT rs imum Pulley Ø (mm) 51 51	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6 (lbs) 2.8	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFE Stainte Steel . UHMV 4% (N) 12.5	(lbs) 8.6 15.1 15.1 26.7 26.7 44.2 44.2 44.2 44.2 CLENT OF Erss Steel 60 V .45 Wo (lbs) 8.4	2% (N) 38.2 67.0 67.0 118.8 118.8 118.8 196.7 196.7 196.7 196.7 196.7 .70	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 70.4 TE -3 -2 Percent (lbs) 11.9	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 313.1 313.1 313.1 2°F to +1 Tension 8% (N) 52.9	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 89.8 89.8 (lbs) 14.7	(N) 77.6 136.1 136.1 241.3 241.3 399.4 399.4 10% (N) 65.4	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25 .25 	(lbs) .08 .08 .12 .12 .20 .20	per metri (lvory 85 f .07 .10 .13 .16 .19 .28 .37 .37 .28 .37	e (kg) (SGT) .12 .12 .18 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top Eagle H Section ³ /16" ¹ /4" ⁵ /16" ³ /8"	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Lyfen 85 Dimensions (m) 3/16 1/4 5/16 3/8	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUNCH, Reinforced RDNESS A COMPLIANT 's S1 70 70	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6 (lbs) 2.8 3.7	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFIT Stainle Steel . UHMN 4% (N) 12.5 16.5	(lbs) 8.6 15.1 15.1 26.7 26.7 44.2	2% (N) 38.2 67.0 67.0 118.8 118.8 196.7 196.7 196.7 196.7 196.7 196.7 .70	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 70.4 70.4 70.4 70.4 70.4 (lbs) 11.9 20.0	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 MPERATUR 0°C to +0 2°F to +1 Tension 8% (N) 52.9 89.0	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 80.6 15.0 14.7 27.8 14.7 15.7 14.7 15.7 14.7 14.7 15.7 14.7 14.7 15.7 14.7 15.7 14.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7 14.7 15.7	(N) 77.6 136.1 241.3 241.3 399.4 399.4 10% (N) 65.4 123.7	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25 .25 .25 .01 .01 .01 .03	(lbs) .(SGT) .08 .12 .20 	per metri (lvory 85 f .07 .10 .13 .16 .19 .28 .37 .37 .37 .0 .0 .01 .01	e (kg) (SGT) .12 .12 .18 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top Eagle H Sidge-Top Eagle H Sidge-Top Eagle Section ³ /16" ¹ /4" ⁵ /16" ³ /8" ¹ /2"	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Lyfen 85 (m) 3/16 1/4 5/16 3/8 1/2	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUNCL, REINFORCED SCRIPTION RDNESS A A COMPLIANT S imum Pulley Ø (mm) 51 70 87 105 140	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6 14.6 (lbs) 2.8 3.7 3.7 7.3 7.3	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFIG Stainle Steel . UHMN 4% (N) 12.5 16.5 16.5 32.5 32.5	(lbs) 8.6 15.1 26.7 26.7 26.7 44.2 44.2 44.2 44.2 44.2 44.2 (lbs) 8.4 12.4 12.4 12.4 26.2 26.2	2% (N) 38.2 67.0 118.8 118.8 196.7 196.7 196.7 196.7 FRICTION .7O FRICTION .7O (N) 37.4 55.2 116.5 116.5	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 70.4 70.4 70.4 70.4 (lbs) 11.9 20.0 20.0 43.5 43.5	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 313.1 313.1 0°C to +0 2°F to +1 Tension 8% (N) 52.9 89.0 193.5 193.5	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 (bs) 14.7 27.8 27.8 27.8 57.4 57.4	(N) 77.6 136.1 241.3 241.3 399.4 399.4 399.4 10% (N) 65.4 123.7 123.7 123.7 255.3 255.3	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25 .25 .01 .01 .03 .04 .04 .06 .10	(lbs) . (SGT) . 08 	per metri (lvory 85 l .07 .10 .13 .16 .19 .28 .37 .37 .37 .37 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	e (kg) (SGT) .12 .12 .18 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top C/22 Section ³ /16" ¹ /4" ⁵ /16" ³ /8" ¹ /2" ⁹ /16"	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Lyfen 85 Dimensions (in) 3/16 1/4 5/16 3/8 1/2 9/16	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUNCH, Reinforced SCRIPTION RDNESS A A COMPLIANT Image: SS A COMPLIANT Image: SS Image: SS A Image: SS A Image: SS Image: SS Image: SS IMA Image: SS Image: SS Image: SS Image: SS	(lbs) 2.9 5.0 8.8 8.8 14.6 14.6 14.6 (lbs) 2.8 3.7 3.7 7.3 7.3 16.7	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFIC Stainle Steel . UHMV 4% (N) 12.5 16.5 16.5 16.5 32.5 32.5 74.3	(lbs) 8.6 15.1 15.1 26.7 26.7 44.2 44.2 44.2 44.2 44.2 44.2 (bs) 8.4 12.4 12.4 12.4 12.4 12.4 26.2 36.6	2% (N) 38.2 67.0 67.0 118.8 118.8 196.7 196.7 196.7 196.7 196.7 (N) 37.4 55.2 55.2 116.5 116.5 162.8	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.0	3% (N) 60.8 106.7 106.7 189.2 313.1 313.1 313.1 MPERATUR 0°C to +(2°F to +1 Tension 8% (N) 52.9 89.0 193.5 193.5 258.0	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 (bs) 14.7 27.8 27.8 57.4 57.4 57.4 75.8	(N) 77.6 136.1 136.1 241.3 241.3 399.4 399.4 399.4 10% (N) 65.4 123.7 123.7 123.7 123.7 255.3 337.2	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25 .25 .01 .01 .03 .04 .06 .10 .13	(lbs) (SGT) .08 .12 .12 .20 .20 .12	per metri (lvory 85 f .07 .10 .13 .16 .19 .28 .37 .28 .37 .28 .37 .28 .37 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	e (kg) (SGT) .12 .12 .18 .30 .30 .30 .30 .30 .30 .30 .30 .30
Section Z/10 A/13 A Ridge-Top B/17 B Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top C/22 C Ridge-Top 3/16" ³ /16" ³ /16" ³ /16" ³ /16" ³ /16" ³ /8"	(mm) 10 x 6 13 x 8 13 x 16 17 x 11 17 x 20 22 x 14 22 x 28 Lyfen 85 (m) 3/16 1/4 5/16 3/8 1/2	(in) (Ivory 85 R) 2.38 3.13 6.30 4.38 7.88 5.50 11.00 R	ulley Ø (SGT) 	Minimum Pulley Ø (mm) (lvory 85 R) (SGT) 60 — 80 92 160 — 110 124 200 — 140 152 280 — SCRIPTION DUNCH, Reinforced SCRIPTION RDNESS A A COMPLIANT S imum Pulley Ø (mm) 51 70 87 105 140	(lbs) 2.9 5.0 5.0 8.8 8.8 14.6 14.6 14.6 (lbs) 2.8 3.7 3.7 7.3 7.3	(N) 12.7 22.2 39.4 39.4 65.1 65.1 COEFFIG Stainle Steel . UHMN 4% (N) 12.5 16.5 16.5 32.5 32.5	(lbs) 8.6 15.1 26.7 26.7 26.7 44.2 44.2 44.2 44.2 44.2 44.2 (lbs) 8.4 12.4 12.4 12.4 26.2 26.2	2% (N) 38.2 67.0 118.8 118.8 196.7 196.7 196.7 196.7 FRICTION .7O FRICTION .7O (N) 37.4 55.2 116.5 116.5	(lbs) 13.7 24.0 24.0 42.5 42.5 70.4 70.4 70.4 70.4 70.4 70.4 (lbs) 11.9 20.0 20.0 43.5 43.5	3% (N) 60.8 106.7 106.7 189.2 189.2 313.1 313.1 313.1 313.1 0°C to +0 2°F to +1 Tension 8% (N) 52.9 89.0 193.5 193.5	(lbs) 17.4 30.6 30.6 54.3 54.3 89.8 89.8 89.8 89.8 89.8 (bs) 14.7 27.8 27.8 27.8 57.4 57.4	(N) 77.6 136.1 241.3 241.3 399.4 399.4 399.4 10% (N) 65.4 123.7 123.7 123.7 255.3 255.3	Per foot (Ivory 85 F .05 .07 .09 .11 .13 .19 .25 .25 .01 .01 .03 .04 .04 .06 .10	(lbs) . (SGT) . 08 	per metri (lvory 85 l .07 .10 .13 .16 .19 .28 .37 .37 .37 .37 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	e (kg) (SGT) .12 .12 .18 .30 .30 .30 .30 .30 .30 .30 .30 .30

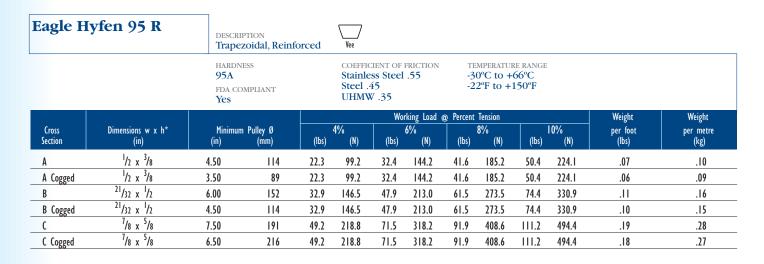
For technical assistance and drive design help, contact Applications Engineering at +44 (0)870 7577007.

* w (width) is the widest part of the belt. b (height) is the tallest part of the belt. Dimensions are for reference only.

Eagle H	Iyfen 85 CXF	DESCRI Trape	PTION zoidal, Reinf o	rced	Vee F	\	7`	10minal 2. dd 2.5mm		to listed b	eight for to	otal belt height.	
			ESS ase, 60A Top MPLIANT			ess Steel 60	FRICTION .70	-3	MPERATUI 0°C to + 2°F to +				
						Wo	rking Load	@ Percent	Tension			Weight	Weight
Cross Section	Dimensions w x h* (in)	Minimu n (in)	n Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
A	¹ /2 x ⁵ /16	4.50	115	22.2	98.6	29.6	131.7	36.7	163.1	43.4	193.2	.07	.10
A Twin	³ /16 x ⁵ /16	4.50	115	21.0	93.3	28.0	124.7	34.7	154.4	41.1	182.9	.38	.57
В	²¹ /32 x ¹³ /32	5.50	140	32.7	145.7	43.7	194.6	54.I	240.9	64.I	285.3	.11	.16
C	⁷ /8 x ¹⁷ /32	7.00	178	48.9	217.6	65.4	290.7	80.9	359.9	95.9	426.3	.15	.22
D	$1^{1}/4 \times {}^{3}/4$	12.50	318	96.4	428.7	128.7	572.6	159.4	708.8	188.8	839.7	.19	.28

Eagle (Orange 85 R	descrii Round	PTION I, Reinforce	d	\bigcirc								
		HARDNI 85A FDA CO Yes	ESS MPLIANT			ss Steel 60	FRICTION .70	-3	MPERATUR 0°C to +0 2°F to +1	66°C			
						Wo	king Load (@ Percent	Tension			Weight	Weight
Cross Section	Dimensions Ø (in) (mm)	Minimum (in)	Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	0% (N)	per foot (lbs)	per metre (kg)
6mm	6	2.38	60	0.8	3.6	2.8	12.3	5.4	24.1	7.8	34.6	.025	.04
l/4"	¹ /4	2.50	64	0.8	3.6	2.8	12.3	5.4	24.I	7.8	34.6	.03	.05
⁵ /16"	5/16	3.13	79	1.3	5.6	4.3	19.3	8.5	37.6	12.1	54.0	.04	.06
8mm	8	3.13	80	1.8	8.0	6.2	27.8	12.2	54.2	17.5	77.8	.04	.06
³ /8"	³ /8	3.75	95	1.8	8.0	6.2	27.8	12.2	54.2	17.5	77.8	.06	.09
10mm	10	3.94	100	2.6	11.6	10.1	39.5	17.1	76.I	24.9	110.7	.06	.09
l2mm	12	4.75	120	3.3	14.7	11.5	51.2	22.5	100.0	32.3	143.7	.09	.13
¹ /2"	¹ /2	5.00	127	3.2	14.2	11.1	49.4	21.6	96.3	31.1	138.2	.10	.15
⁹ /16"	⁹ /16	5.63	143	4.1	18.0	14.0	62.5	27.4	121.9	39.3	175.0	.13	.19
15mm	15	5.90	150	4.5	20.0	15.5	68.9	30.2	134.3	43.4	193.0	.14	.21
⁵ /8"	⁵ /8	6.25	159	5.0	22.3	17.3	77.I	33.8	150.4	48.6	216.0	.16	.24
³ /4"	³ /4	7.50	191	7.2	32.I	25.0	.	48.7	216.6	69.9	311.1	.23	.34
20mm	20	7.88	200	7.6	33.8	26.3	116.9	51.1	227.3	73.4	326.5	.23	.34


For technical assistance and drive design belp, contact Applications Engineering at +44 (0)870 7577007. * w (widtb) is the widest part of the belt. b (beight) is the tallest part of the belt, NOT including the nominal 2.5mm of the integrally bonded top surface belting. Dimensions are for reference only.


Г

Drange 85 R			orced	Vee								
	85A			Stainle Steel	ss Steel 60		-3	0° C to +	66°C			
					Wo	rking Load (@ Percent	Tension			Weight	Weight
Dimensions w x h*											per foot	per metre
(mm)	(in)	(mm)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(N)	(lbs)	(kg)
10 x 6	2.38	60	2.6	11.4	6.1	27.0	9.7	43.0	12.7	56.6	.05	.07
13 x 8	3.13	80	4.0	17.9	9.5	42.4	15.2	67.6	20.0	89.0	.07	.10
17 x 11	4.38	110	7.0	30.9	16.5	73.3	26.2	116.7	34.5	153.7	.11	.16
22 x 14	5.50	140	2.	53.8	28.7	127.7	45.7	203.3	60.2	267.8	19	.28
	Dimensions w x h* (mm) 10 x 6 13 x 8 17 x 11	Dimensions w x h* Minimum (in) 10 x 6 2.38 13 x 8 3.13 17 x 11 4.38	Dimensions w x h* Minimum Pulley Ø (in) Dimensions x x h* Minimum Pulley Ø (in) 10 x 6 2.38 60 13 x 8 3.13 80 17 x 11 4.38 110	Dimensions w x h* Minimum Pulley Ø (in) ((bs)) 10 x 6 2.38 60 2.6 13 x 8 3.13 80 4.0 17 x 11 4.38 110 7.0	Discription Trapezoidal, Reinforced Vee HARDNESS COEFFIC 85A Statility FDA COMPLIANT Steel 4 UHMV Dimensions w x h* Minimum Pulley Ø 1% (mm) (Ibs) (N) 10 x 6 2.38 60 2.6 13 x 8 3.13 80 4.0 17.9 17 x 11 4.38 110 7.0 30.9	Description Trapezoidal, Reinforced Vee HARDNESS 85A FDA COMPLIANT (mm) COEFFICIENT OF Stainless Steel Steel .60 UHMW .45 Dimensions w x h* (mm) Minimum Pulley Ø (in) (mm) 1% (bs) Wo Dimensions w x h* (mm) Minimum Pulley Ø (in) (mm) 1% (bs) (lbs) 10 x 6 2.38 60 2.6 11.4 6.1 13 x 8 3.13 80 4.0 17.9 9.5 17 x 11 4.38 110 7.0 30.9 16.5	Disscription Trapezoidal, Reinforced Vee HARDNESS 85A FDA COMPLIANT Yes COEFFICIENT OF FRICTION Stainless Steel .70 Steel .60 UHMW .45 Dimensions w x h* (mm) Minimum Pulley Ø (in) I% (mm) Vorking Load (b) Coefficient of FRICTION UHMW .45 Dimensions w x h* (mm) Minimum Pulley Ø (in) I% (b) 2% (b) (b) 10 x 6 2.38 60 2.6 11.4 6.1 27.0 13 x 8 3.13 80 4.0 17.9 9.5 42.4 17 x 11 4.38 110 7.0 30.9 16.5 73.3	Discription Trapezoidal, Reinforced Vee HARDNESS 85A FDA COMPLIANT Yes COEFFICIENT OF FRICTION Stainless Steel .70 2 TH -3 .5 Dimensions w x h* (mm) Minimum Pulley Ø (in) 1% 2% Percent (b) Dimensions w x h* (mm) Minimum Pulley Ø (in) 1% 2% (b) (b) 10 x 6 2.38 60 2.6 11.4 6.1 27.0 9.7 13 x 8 3.13 80 4.0 17.9 9.5 42.4 15.2 17 x 11 4.38 110 7.0 30.9 16.5 73.3 26.2	$\frac{DESCRIPTION}{Trapezoidal, Reinforced} Vee \\ HARDNESS \\ 85A \\ FDA COMPLIANT \\ Yes \\ Vee \\ \frac{Minimum Pulley Ø}{(in)} (mm) \\ 10 x 6 \\ 13 x 8 \\ 3.13 \\ 80 \\ 4.0 \\ 17 x 11 \\ 4.38 \\ 110 \\ 7.0 \\ 30.9 \\ 16.5 \\ 73.3 \\ 26.2 \\ 16.5 \\ 73.3 \\ 26.2 \\ 16.5 \\ 73.3 \\ 26.2 \\ 16.7 \\ Vee \\ \frac{Vee}{Vee} \\ \frac{Vee}{V$	$\frac{DESCRIPTION}{Trapezoidal, Reinforced} Vee \qquad Vee $	$\frac{Description}{Trapezoidal, Reinforced} Vee \\ HARDNESS \\ \frac{85A}{FDA COMPLIANT} \\ \frac{Vee}{Ves} \\ \frac{Vee}{Ves} \\ \frac{Vee}{Vee} \\ V$	$\frac{Description}{Trapezoidal, Reinforced} Vee \\ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Eagle G	reen 89 RT		IPTION d, Reinforced, Ired		\bigcirc								
		HARDI 89A FDA CO NO	NESS OMPLIANT			ess Steel 40	FRICTION .50	-3	mperatur 0°C to + 2°F to +	66°C			
						Wo	rking Load	@ Percent	Tension			Weight	Weight
Cross Section	Dimensions Ø (mm)	Minimui (in)	n Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	10% (N)	per foot (lbs)	per metre (kg)
5mm	5	2.00	50	1.7	7.4	5.0	22.2	10.2	45.5	15.8	70.I	.02	.03
6mm	6	2.38	60	2.4	10.6	7.2	32.0	14.7	65.5	22.7	101.0	.025	.04
7mm	7	2.75	70	3.3	14.5	9.8	43.5	20.0	89.I	30.9	137.4	.03	.05
8mm	8	3.13	80	4.3	18.9	12.8	56.8	26.2	116.4	40.4	179.5	.04	.06
l Omm	10	3.94	100	6.6	29.6	20.0	88.8	40.9	181.9	63.I	280.5	.06	.09
l2mm	12	4.75	120	9.6	42.6	28.8	127.9	58.9	262.0	90.8	403.9	.09	.13
I5mm	15	5.90	150	15.0	66.5	44.9	199.8	92.0	409.3	141.9	631.1	.14	.21
l 8mm	18	7.00	180	21.5	95.8	64.7	287.8	132.5	589.4	204.3	908.8	.22	.33

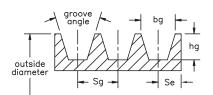
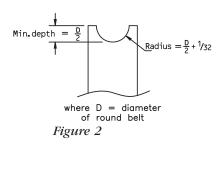
Eagle B	eige 95 R		IPTION d, Reinforcec	I	\bigcirc								
		HARDN 95A FDA CO Yes	NESS OMPLIANT			ss Steel 45	FRICTION .55	-3	MPERATUR 0°C to +0 2°F to +1	66°C			
							rking Load (Weight	Weight
Cross Section	Dimensions Ø (mm)	Minimur (in)	m Pulley Ø (mm)	(lbs)	4% (N)	(lbs)	6% (N)	(lbs)	8% (N)	(lbs)	0% (N)	per foot (lbs)	per metre (kg)
5mm	5	2.38	60	1.5	6.7	2.7	12.2	4.1	8.1	5.3	80.5	.02	.03
8mm	8	3.75	96	3.8	17.1	7.0	31.2	10.4	46.2	13.6	205.5	.04	.06
10mm	10	4.75	120	6.0	26.7	11.0	48.8	16.2	72.2	21.2	321.1	.06	.09
I 5mm	15	7.10	180	13.5	60.1	24.7	109.7	36.5	162.5	47.8	722.8	.14	.21

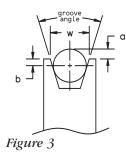
Eagle Can Cable			DESCRII Round	PTION I, Reinforced		\bigcirc								
			Polyes	^{MATERIAL} Polyester Red: Engineered Polymer			HARDNESS See Chart FDA COMPLIANT Natural & Green Only			MPERATUI ED ONLY) 0°C to + 2°F to +	66°C		TEMPERATURE RAN (ALL OTHERS) -30°C to +80°C -22°F to +176°F	
Product	Durometer Hardness	Diameter Ø (in)	Minimum (in)	Pulley Ø (mm)	(lbs)	1% (N)		Working Load @ 2% (Ibs) (N)		Percent Tension 3% (Ibs) (N)		4% (N)	_ Weight per foot (lbs)	Weight per metre (kg)
Red 50D CC LCF	50D	³ /8	10.00	254	23.8	105.9	57.8	257.2	104.3	463.7	152.2	677.2	0.06	0.09
Blue 55D CC	55D	³ /8	12.00	305	18.1	80.5	42.8	190.4	79.4	353.2	118.4	526.6	0.06	0.09
Natural 55D CC	55D	³ /8	12.00	305	18.1	80.5	42.8	190.4	79.4	353.2	118.4	526.6	0.06	0.09
Green 63D CC	63D	3/8	12.00	305	18.1	80.5	42.8	190.4	79.4	353.2	118.4	526.6	0.06	0.09
Natural 63D CC	63D	³ /8	12.00	305	18.1	80.5	42.8	190.4	79.4	353.2	118.4	526.6	0.06	0.09

For technical assistance and drive design belp, contact Applications Engineering at +44 (0)870 7577007. * w (width) is the widest part of the belt. b (beight) is the tallest part of the belt, NOT including the nominal 5 mm of the integrally bonded top surface belting. Dimensions are for reference only.

V-Belts

All polyurethane V-belts in the "classical" profiles, i.e.A, B, C, and D, are designed to fit ISO and DIN 2215 compliant pulleys as per the groove details illustrated in Fig. 1 below.

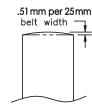



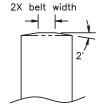

Figure 1

Cross Diameter Range Groove Groove Angle bg Sg Se Sp h_g Min Sg Section Angle Tolerance Toleranc Tolerance Z/10 34° Up thru 80mm ±۱° 9.7 П 12 ±0.3 8 ±0.6 Over 80mm 38° A/13 Up thru 118mm 34° ±۱° 12.7 14 15 ±0.3 10 ±0.6 Over 118mm 38° 34° B/17 Up thru 190mm ±۱° 16.3 18 19 ± 0.4 12.5 ±0.8 Over 190mm 38° 34° C/22 Up thru 315mm ±۱° 22 24 25.5 ±0.5 17 ±1.0 38° Over 315mm ±30' 36° D/32 Up thru 500mm ±30' 32 37 28 ±0.6 24 ±2.0 Over 500mm 38°

Round Belts

Round Eagle[®] belting is commonly run in pulleys with a round profile, see Fig. 2. In the absence of round groove pulleys, round belts can also be used in pulleys with vee grooves, Fig. 3.The table below shows the dimensional data when a round belt is used in a V-groove.




Pulley	Pulley	Groove	Round		Dimensions	
Size	Diameter	Angle	Belt	w	a	b
Z/10	Up thru 80mm	34°	7	9.7	-0.39	3.89
			8	9.7	1.82	2.18
			9.5	9.7	5.14	-0.39
Z/10	Over 80mm	38°	7	9.7	0.17	3.34
			8	9.7	2.19	1.81
			9.5	9.7	5.25	-0.50
A/13	Up thru 118mm	34°	9.5	12.7	0.23	4.52
			10	12.7	1.33	3.67
			12	12.7	5.75	0.25
A/13	Over 118mm	38°	9.5	12.7	0.90	3.85
			10	12.7	1.91	3.09
			12	12.7	5.98	0.02
B/17	Up thru 190mm	34°	12	16.3	-0.14	6.14
			15	16.3	6.50	1.00
			16	16.3	8.71	-0.71
B/17	Over 190mm	38°	12	16.3	0.76	5.24
			15	16.3	6.87	0.63
			16	16.3	8.90	-0.90
C/22	Up thru 315mm	34°	20	22	8.22	1.78
C/22	Over 315mm	38°	20	22	9.00	1.23

Note: above dimensions are belt fit in groove under no tension. Dimensions are in millimetres.

Flat Belts

All flat belts have a natural tendency to move laterally. Therefore a flat or straight pulley is not recommended, as the belt would walk off the pulley. To keep the belt in the centre of the pulley it must have a crown. Fig. 4 illustrates a round crown and is the preferred method. A modified round crown as illustrated in Fig. 5 is also acceptable. A flat pulley with guide flanges (Fig. 6) is not recommended. Even with the guide flanges the belt will move laterally and potentially could climb up onto them.

RECOMMENDED Figure 4

ACCEPTABLE *Figure 5* NOT SUITABLE *Figure 6*

Belt Installation Tension

When non-reinforced Eagle[®] Belting is stretched and released, elasticity is the characteristic that brings the material back to its original shape. This "memory" is what gives our non-reinforced belting its self-tensioning properties.

When a non-reinforced belt is first installed (stretched) the material does not return to 100% of its original length and, in fact, continues to lose elasticity over its life span. This loss in elasticity causes what is commonly called tension decay.

To overcome the initial and continued stretching, a non-reinforced belt will require what is referred to as "installed" tension. Installation tensions in the 6% to 10% range will normally be sufficient for most applications. If higher tensions are required, the application may exceed the belt's load capacity. For reference, below are installed tensions:

All Eagle Non-Reinforced Belting: 8 – 10% Quick-Connect Belting: 6 – 8%

All Eagle Reinforced Belts contain a reinforcing polyester tensile member, which increases the modulus elasticity of the material and reduces the "stretch" of a non-reinforced belt. Since an endless reinforced belt is essentially a fixed length, the eventual small amount of elongation from tension decay can be dealt with by mechanical take-up devices. This device should accommodate at least 4% of the belt's length to overcome tension decay.

Belt Installation Length

The belt tension length, or "cut length," can be determined from the measured belt length or calculated belt length. The measured length can be obtained by taking a measuring tape and following the path of the belt around all of the pulleys, or through computer aided design (CAD) techniques. The calculated length can be obtained from the following formula. Note: this formula applies to two-pulley drives only.

$L = 2C + 1.57 (D + d) + (D - d)^{2}$	where: L = Installation length
4C	C = centre of pulley shaft to centre of pulley shaft distance
	D = pitch diameter of large pulley
	d = pitch diameter of small pulley

For non-reinforced belting, the cut length is determined by using the measured or calculated (reference) belt length times the percent of required installation tension (6 to 10%).

Cut length = reference length x % tension Example: $1120 \text{ mm} \times 8\%$ tension = $1120 \times .92$ = 1030.4 mm

For reinforced belting, the cut length is the measured or calculated length plus 38mm (11/2").

Temperature

The temperature range of Eagle Belting is determined by the thermoplastic resin. Like all thermoplastic resins, its physical properties are reduced at higher temperatures. The material softens, loses strength and elongates excessively to the point of premature failure. Temperature ranges are listed under each individual belt type in the Technical Data section.

Minimum Pulley Diameter

Non-reinforced belts can operate on smaller diameter pulleys than belts with a reinforcing tensile member. Reinforced belts require a larger pulley diameter to prevent premature flex fatigue failure of the polyester tensile member. The most common serious mistake in designing belt drives is the selection of a pulley diameter that is too small. Listed under each individual belt type is the recommended minimum pulley diameter. Smaller diameters can be used only if a reduction in belt service life is acceptable.

Belt Profile Tolerance

Round Belts:

Up to and including 5mm (3/16") diameter:	± .127mm (0.005")
Over $5 \text{ mm} (3/16")$ up to and including $6.3 \text{ mm} (1/4")$ diameter:	± .178mm (0.007")
Over 6.3 mm (1/4") up to and including 14 mm (9/16") diameter:	± .254mm (0.010")
Over 14mm (9/16") in diameter:	± .305mm (0.012")

Flat and V-Belts:

All profiles: ± .381mm (0.015")

If a tighter tolerance is required, consult Fenner Drives application engineering group with your requirements.

- 1. Refer to the Technical Data chart for the belt material and cross section selected.
- 2. Use the following formula that meets your application requirements (Note: if belt supported by rollers use .17 for μ): a.Horizontal Transport with Slider Bed $T_e = W_t \times \mu + B_{wt}$ c. Incline or Decline Transport with Slider Bed $T_e = W_t \times (H_t + \mu \times \sqrt{C^2 + H_t^2}) + B_{wt}$

	<u> </u>
b. Horizontal Transport with Slider Bed and Product Accumulation $T_e = W_t \times \mu + B_{wt} + A_{wt}$	d. Incline or Decline Transport with Slider Bed and Product Accumulation $T_e = \frac{W_t}{C} \times (H_t + \mu \times \sqrt{C^2 + H_t^2}) + B_{wt} + A_{wt}$
Where: T_e = Effective Tension W_t = Total Weight on Conveyor C = Conveyor Centre Distance B_{wt} = Belt weight/unit length × C	 A_{wt} = Accumulating weight × μ (where μ is the COF between belt and product) H_t = Incline or decline height μ = COF on slider bed material from chart
3. Determine Tight Tension (T ₁). Flat and round belts $-T_1 = T_e \times 2$	V-belts — $T_1 = T_e \times 1.25$

- 4. Refer to the Technical Data chart for the material and cross section selected and compare T_1 to the Working Load at 10% tension. If only one belt is desired, T_1 may not be greater than the Working Load at 10% tension. If more than one belt is required, divide T_1 by the Working Load at 10% tension to arrive at number of belts. Round up to the nearest whole number of belts.
- 5. Find load per belt by dividing T_1 by number of belts. From the Technical Data chart, determine the percent installed tension for the load per belt.
- 6. Belt cut length (mm) = measured or calculated belt length (mm) \times (1 corresponding % tension).

Engineering Data — Selection Example

Type of belt being considered = Eagle Orange 85A in 6mm roundHead-to-tail centre distance (C) = 3 MetresTotal weight on belt(s) = 6 kgIncline or decline = noneType of belt support = UHMW slider bedProduct accumulation on belt(s)? = noType of belt support = UHMW slider bed

1. Refer to the Technical Data chart for the belt material and cross section selected.

Eagle Eagle	Orange 85 Clear 85	Rou	RIPTION nd, •Reinforced		HARDNESS 85A FDA COMPLIA Yes	ANT					-30°	PERATURI PC to +6 PF to +1	66°C		
Cross Section	Dimensions Ø (in)	mm)	Minimum (in)	Pulley Ø (mm)	4 (lbs)	% (N)		king Load 5% (N)	<u> </u>	Tension 8% (N)	(lbs)	10% (N)		Weight per foot (lbs)	Weight per metre (kg)
6mm		6	1.88	48	1.7	7.6	2.6	11.6	3.5	15.6	4.3	19.1		.025	.017
¹ /4"	I/4		2.00	51	1.9	8.5	2.9	12.9	3.9	17.3	4.8	21.4		.03	.020

- 2. Horizontal Transport with Slider Bed. Since the belt will run in UHMW slider bed the COF(μ) of .45 is used from Technical Data chart. From the chart the belt weight is .02 kgs/M giving a total belt weight of .06 kg (.02 × 3). T_e = 6 kg × .45 + .06 = 2.76 kg
- 3. Determine Tight Tension (T₁).

round belts $T_1 = 2.76 \times 2 = 5.52 \text{ kg} = 54.1 \text{ Newtons} (5.52 \times 9.81)$

4. Refer to the Technical Data chart for the material and cross section selected and compare T_1 to the Working Load at 10% tension. If only one belt is desired, T_1 may not be greater than the Working Load at 10% tension. If more than one belt is required, divide T_1 by the Working Load at 10% tension to arrive at number of belts. Round up to the nearest whole number of belts.

6mm round rated 19.1 kg @ 10% tension. 54.1 ÷ 19.1 = 2.84 — round up to 3 belts

5. Find load per belt by dividing T_1 by number of belts. From the Technical Data chart, determine the percent installed tension for the load per belt. Load/belt = 54.1 N ÷ 3 = 18.0 Newtons

corresponding installed tension = 9.4%

Polyurethane is extremely resistant to many industrial oils and chemicals, but not all. Below are a wide variety of oils and chemicals found in industrial applications. Consult Fenner Drives application engineering group for assistance on projects with design criteria outside these parametres, or obtain a sample belt and determine its compatibility in the precise operating conditions.

Acids	Rating	Fuels	Rating	Solvents	Rating
Acetic, 5%	Ċ	ASTM Fuel A	Ā	Acetone	Ċ
Boric, 4%	С	ASTM Fuel B	С	Aniline	С
Chromic	С	ASTM Fuel C	С	Benzene	С
Citronic	С	Diesel Fuel	В	Benzyl Alcohol	С
Formic	С	Gasoline, Premimum	С	Butane	С
HCI	В	Gasohol (10-15% Methanol)	С	Butyl Acetate	С
Hydrochloric, 10%	С	Jet Fuel, JP-4	А	Butyl Alcohol	С
Lactic	С	Kerosene	А	Carbon Tetrachloride	С
Nitric, >1%	C			Chlorobenzane	C
Oleic	С	Oils	Rating	Chloroform	С
Phosphoric	C	ASTM Oil #1	A	Cyclohexane	C
Sulfuric, <20%	B	ASTM Oil #2	A	Ethanol	C
Sulfuric, >20%	C	ASTM Oil #3	A	Ether	C
Sunano, • 2070	U	Brake Fluid (ATE or ATS)	С	Ethyl Acetate	C
		Gear Box Oil (SAE 90)	A	Freon 11, 12, 22	C
Alkalines	Rating	Hydraulic Fluid	C	Freon 113	A
Ammonia, >10%	C	Hydraulic/Water Emulsion	C	Glycerine, Glycerol, Glycol	A
Detergent, 1%	A	Mineral Oil	A	Heptane	B
Potassium Hydroxide	B	Motor Oil	A	Hexane	Б С
	A	Parafin Oil	A		C
Soap, 1%	A C			Isopropyl Alcohol	
Sodium Hydroxide, 10%	C	Petroleum (Texas Sour Crude)		Methanol Mathad Asstate	С
		Power Stering Fluid	В	Methyl Acetate	С
	5.4	Skydrol 500 Oil	С	Methyl Ethyl Ketone	С
Aqueous Solutions	Rating	Transmission Oil A	А	Methyl Glycol	С
Aluminum Chloride, 10%	С		_	Methylene Chloride	С
Ammonium Chloride, 10%	С	Greases	Rating	N-Methyl Pyrroidone	С
Bleaching Agent, 40%	В	Calcium Grease	В	Perchloroethylene	С
Bleaching Agent, 100%	С	Sodium Grease	В	Pyridine	С
Calcium Chloride, 40%	С	Teflon Grease	А	Turpentine	A
Caustic Soda, 10%	В			Tetrachloroethylene	С
Cola	А			Tetrahydrofuran	С
Ferric Chloride, 10%	С	Miscellaneous	Rating	Toluene	С
Hydrogen Peroxide, 3%	В	Dioctyl Phthalate (DOP)	А	Trichloroethylene	С
Isopropanol, 50%	С	Ethylene Chloride	С	Xylene	С
Magnesium Chloride, 30%	С	Ethylene Dichloride	С		
Potassium Chloride, 40%	С	Eythlene GlycoWater 50/50	С		
Potassium Dichromate, 10%	С	Household Cleaner	В		
Potassium Permanganate, 5%	С	Naptha	А		
Sea Water	В	Silage (Silo) Juice	С		
Sodium Bisulfate, 10%	С	Natural Perspiration	В		
Sodium Chloride, 10%	C	Tincture of Iodine	C		
Sodium Hypochlorite, 5%	C	Tricresyl Phosphate	C		
Sodium Thiosulfate, 20%	A		-		
Water, Deionized	A				
				Rating Key	

A - Fluid has little or no effect

B - Fluid has minor to moderate effect

C - Fluid has severe effect

Are all of the Eagle[®] Belting products FDA compliant?

Eagle® Opaque 80, Ivory 85, Green 89, Red 90, Blue 55D, and Eagle Red and Blue Can Cable are not. Standard Eagle Red 85 CXF and Eagle Hyfen CXF and CXR are not; consult factory for availability of compliant materials. All of the other belts are manufactured from FDA compliant materials.

I have an application involving 93°C/200°F temperature. Can I use your polyurethane belting?

Our Eagle polyurethane products are usually limited to 66°C/150°F (see product info for details). At higher temperatures the polyurethane softens and loses strength, resulting in excessive stretch. However, Fenner Drives' PowerTwist Plus[®] should be considered as an option.

My application involves washdown. What effect will it have on the belt?

Polyurethane is resistant to water and many industrial chemicals, but not resistant to all. Consult the chemical resistance chart in this catalogue or contact Fenner Drives application engineering group with the contaminants present and we will make a recommendation.

The standard profiles shown do not appear to suit my needs. Do you make special profiles?

Yes! At Fenner Drives, we welcome the opportunity. Contact Fenner Drives application engineering group for assistance.

For any questions about our extensive line of products, just call +44 (0)870 7577007 and your Inside Sales Specialist will help you.

Are the Polyurethane and Polyester belting products RoHS compliant?

Yes. All of the Eagle Polyurethane and Polyester Belting products are RoHS compliant.

I plan on using a "B/17" section polyurethane belt. Will your belt fit pulleys that I can buy from numerous power transmission distributors?

Yes. All of our "classical" polyurethane belts, i.e. A/13, B/17, C/22 and D/32, are designed to fit BS/DIN/ISO compliant pulleys.

Why can't I butt weld your reinforced polyurethane belting?

You can, but in most applications it is not recommended. To receive the full load carrying capacity of the belt, an overlap weld is recommended.

Do I need some take-up adjustment when using your polyurethane belts?

When using non-reinforced polyurethane belting, take-up is not required. However, all reinforced type belting does require take-up. One good option is our T-Max[™] Rotary Belt Tensioners with a PowerMax[™] Idler Pulley.

On my conveying application, the product being moved could occasionally accumulate. What belt do you recommend for this?

Our Eagle Green 89 with its textured surface provides a lower coefficient of friction, ideal for applications where product accumulation can occur.

Count on Fenner Drives. We've got the right product for your application.

SUPER TLINK

Power Mex

Trantorque[®] Keyless Bushings

Trackster

Fenner Drives is a proven leader in the design and manufacture of problem-solving power transmission and motion transfer components. Recognized widely for our expertise and innovation in manufacturing technology, we consistently blend reliability, quality and value in our products. Our ISO 9001:2000 certified production facilities are located in Leeds, UK; Manheim, PA and Wilmington, NC. As part of our commitment to provide unsurpassed technical support and service, we maintain extensive engineering, development and testing facilities.

Visit us at www.fennerdrives.com

Hudson Road Leeds, LS9 7DF UK

www.fennerdrives.com TEL: +44 (0) 870 7577007 TEL: +44 (0) 113 2493486 FAX: +44 (0) 113 2489656 311 West Stiegel Street Manheim, PA 17545-1747

www.fennerdrives.com TEL: 800-243-3374 TEL: 717-665-2421 FAX: 717-665-2649